Concept explainers
(a)
The natural Logarithm equilibrium constant for the reaction at
Compare the results for the values of
(a)

Answer to Problem 23P
The natural Logarithm equilibrium constant for the reaction at
The natural equilibrium constant obtained from the equilibrium constants of Table A-28 at 2
Explanation of Solution
Express the standard-state Gibbs function change.
Here, the Gibbs function of components
Write the equation to calculate the natural logarithms of equilibrium constant for the chemical equilibrium of ideal-gas mixtures.
Here, universal gas constant is
Conclusion:
From the equilibrium reaction, the values of
Refer Table A-26, obtain the values of
Substitute 1 for
Substitute
Thus, the equilibrium constant obtained from the equilibrium reaction at 298 K is
From table A-28, “Natural logarithms of the equilibrium constant” obtain the equilibrium constant for the reaction at the temperature of 298 K as
The value obtained for equilibrium constant at 298 K from the definition of the equilibrium constant is
(b)
The natural logarithm equilibrium constant for the reaction at 2000 K.
Compare the results for the values of
(b)

Answer to Problem 23P
The natural logarithm equilibrium constant for the reaction at 2000 K is
The natural Logarithm equilibrium constant obtained from the equilibrium constants of Table A-28 at 2000K is
Explanation of Solution
Express the standard-state Gibbs function change.
Here, the Gibbs function of components
Write the equation to calculate the natural logarithms of equilibrium constant for the chemical equilibrium of ideal-gas mixtures.
Here, universal gas constant is
Conclusion:
From the equilibrium reaction, the values of
Refer Table A-26, obtain the values of
Refer Table A-20, obtain the value of
Refer Table A-20, obtain the value of
Refer Table A-21, obtain the value of
Refer Table A-21, obtain the value of
Refer Table A-19, obtain the value of
Refer to Table A-19, obtain the value of
Substitute 1 for
Substitute
Thus, the natural logarithm equilibrium constant obtained from the equilibrium reaction at 2000K is
Refer Table A-28, “Natural logarithms of the equilibrium constant” obtain the equilibrium constant for the reaction by interpolating for the temperature of 2000 K as
The value obtained for equilibrium constant at 2000K from the definition of the equilibrium constant is
Want to see more full solutions like this?
Chapter 16 Solutions
THERMODYNAMICS: ENG APPROACH LOOSELEAF
- for the values: M1=0.41m, M2=1.8m, M3=0.56m, please account for these in the equations. also please ensure that the final answer is the flow rate in litres per second for each part. please use bernoullis equation where needed if an empirical solutions i srequired. also The solutions should include, but not be limited to, the equations used tosolve the problems, the charts used to solve the problems, detailed working,choice of variables, the control volume considered, justification anddiscussion of results etc.If determining the friction factor, the use of both Moody chart and empiricalequations should be used to verify the validity of the valuearrow_forwardSolve this problem and show all of the workarrow_forwardSolve this problem and show all of the workarrow_forward
- Problem 2: An athlete, starting from rest, pulls handle A to the left with a constant force of P = 150 [N]. Knowing that after the handle A has been pulled 0.5 [m], its velocity is 5 [m/s] to the left, determine: a) A position constraint equation using the given coordinate system. b) An acceleration constraint equation. c) The acceleration of A using kinematics equations. d) The acceleration of B using your constraint equation. e) How much weight (magnitude) the athlete is lifting in pounds using Newton's 2nd Law. You must draw a FBD and KD of the circled assembly, assuming the pulleys are massless. Note: 1 [lbf] = 4.448 [N]. ХА Увarrow_forwardProblem 1: For each of the following images, draw a complete FBD and KD for the specified objects. Then write the equations of motion using variables for all unknowns (e.g., mass, friction coefficient, etc.), plugging in kinematic expressions and simplifying where appropriate. Assume motion in all cases, so any friction would be kinetic. M (a) Blocks A & B (Be careful with acceleration of B relative to accelerating block A) 30° (b) Block A being pulled up my motor M (use rotated rectangular coordinate system) 20° (c) Ball at C, top of swing (use path coordinates) (d) Parasailer/Person (use polar coordinates)arrow_forwardwhere M1=0.41m, M2=1.8m, M3=0.56m, please use bernoulis equation where necessary and The solutions should include, but not be limited to, the equations used tosolve the problems, the charts used to solve the problems, detailed working,choice of variables, the control volume considered, justification anddiscussion of results etc.If determining the friction factor, the use of both Moody chart and empiricalequations should be used to verify the validity of the value.arrow_forward
- Q3. The attachment shown in Fig.2 is made of 1040 HR. Design the weldment (give the pattern, electrode number, type of weld, length of weld, and leg size). All dimensions in mm 120 Fig.2 12 17 b =7.5 5 kN 60 60°arrow_forward15 mm DA 100 mm 50 mm Assuming the load applied P 80 kN. Determine the maximum stress in the bar shown assuming the diameter of the whole A is DA = 25 mm.arrow_forwarduse engineering economic tables, show full solutionarrow_forward
- Do not use chatgpt. I need quick handwritten solution.arrow_forwardSolve this problem and show all of the workarrow_forwardarch Moving to año Question 5 The head-vs-capacity curves for two centrifugal pumps A and B are shown below: Which of the following is a correct statement at a flow rate of 600 ft3/min? Assuming a pump efficiency of 80%. Head [ft] 50 45. 40 CHE 35. 30 25 20 PR 64°F Cloudy 4arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





