CHEMISTRY: THE MOLECULAR NATURE OF MATTE
9th Edition
ISBN: 9781265974688
Author: SILBERBERG
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Question
Chapter 16.4, Problem 16.8AFP
(a)
Interpretation Introduction
Interpretation : The concentration after
Concept Introduction :
The integrated rate law for the second-order reaction can be shown as:
Where,
(b)
Interpretation Introduction
Interpretation : The half-life of the reaction should be calculated if the initial concentration of iodine is
Concept Introduction :
For second order reaction half-life
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 16 Solutions
CHEMISTRY: THE MOLECULAR NATURE OF MATTE
Ch. 16.2 - Balance the following equation and express the...Ch. 16.2 - Prob. 16.1BFPCh. 16.3 - Prob. 16.2AFPCh. 16.3 - Prob. 16.2BFPCh. 16.3 - Find the rate law, the individual and overall...Ch. 16.3 - Prob. 16.3BFPCh. 16.3 - Prob. 16.4AFPCh. 16.3 - Prob. 16.4BFPCh. 16.4 - Prob. 16.5AFPCh. 16.4 - Prob. 16.5BFP
Ch. 16.4 - Substance X (black) changes to substance Y (red)...Ch. 16.4 - Prob. 16.6BFPCh. 16.4 - Prob. 16.7AFPCh. 16.4 - Prob. 16.7BFPCh. 16.4 - Prob. 16.8AFPCh. 16.4 - Prob. 16.8BFPCh. 16.5 - Prob. 16.9AFPCh. 16.5 - Prob. 16.9BFPCh. 16.5 - Prob. 16.10AFPCh. 16.5 - Prob. 16.10BFPCh. 16.6 - Prob. 16.11AFPCh. 16.6 - Prob. 16.11BFPCh. 16.6 - Prob. 16.12AFPCh. 16.6 - Prob. 16.12BFPCh. 16.7 - Prob. 16.1PCh. 16.7 - Aircraft in the stratosphere release NO, which...Ch. 16.7 - Prob. 16.3PCh. 16 - Prob. 16.1PCh. 16 - Prob. 16.2PCh. 16 - A reaction is carried out with water as the...Ch. 16 - Prob. 16.4PCh. 16 - Prob. 16.5PCh. 16 - Prob. 16.6PCh. 16 - Prob. 16.7PCh. 16 - Prob. 16.8PCh. 16 - Prob. 16.9PCh. 16 - Prob. 16.10PCh. 16 - Prob. 16.11PCh. 16 - Prob. 16.12PCh. 16 - Prob. 16.13PCh. 16 - Prob. 16.14PCh. 16 - Prob. 16.15PCh. 16 - Prob. 16.16PCh. 16 - Prob. 16.17PCh. 16 - Prob. 16.18PCh. 16 - Prob. 16.19PCh. 16 - Prob. 16.20PCh. 16 - Prob. 16.21PCh. 16 - Prob. 16.22PCh. 16 - Prob. 16.23PCh. 16 - Prob. 16.24PCh. 16 - Prob. 16.25PCh. 16 - Prob. 16.26PCh. 16 - Prob. 16.27PCh. 16 - Prob. 16.28PCh. 16 - By what factor does the rate in Problem 16.27...Ch. 16 - Prob. 16.30PCh. 16 - Prob. 16.31PCh. 16 - Prob. 16.32PCh. 16 - Prob. 16.33PCh. 16 - Prob. 16.34PCh. 16 - Prob. 16.35PCh. 16 - Prob. 16.36PCh. 16 - Give the overall reaction order that corresponds...Ch. 16 - Phosgene is a toxic gas prepared by the reaction...Ch. 16 - How are integrated rate laws used to determine...Ch. 16 - Define the half-life of a reaction. Explain on the...Ch. 16 - Prob. 16.41PCh. 16 - Prob. 16.42PCh. 16 - The first-order rate constant for the reaction A...Ch. 16 - The molecular scenes below represent the...Ch. 16 - In a first-order decomposition reaction, 50.0% of...Ch. 16 - A decomposition reaction has a rate constant of...Ch. 16 - Prob. 16.47PCh. 16 - Prob. 16.48PCh. 16 - In a study of ammonia production, an industrial...Ch. 16 - Prob. 16.50PCh. 16 - Prob. 16.51PCh. 16 - Prob. 16.52PCh. 16 - Prob. 16.53PCh. 16 - Prob. 16.54PCh. 16 - Prob. 16.55PCh. 16 - Prob. 16.56PCh. 16 - Prob. 16.57PCh. 16 - Assuming the activation energies are equal, which...Ch. 16 - For the reaction A(g) + B(g) ⟶AB(g), how many...Ch. 16 - Prob. 16.60PCh. 16 - Prob. 16.61PCh. 16 - For the reaction A2 + B2 → 2AB, Ea(fwd) = 125...Ch. 16 - Prob. 16.63PCh. 16 - Prob. 16.64PCh. 16 - The rate constant of a reaction is 4.7×10−3 s−1 at...Ch. 16 - The rate constant of a reaction is 4.50×10−5...Ch. 16 - Prob. 16.67PCh. 16 - Prob. 16.68PCh. 16 - Prob. 16.69PCh. 16 - Explain why the coefficients of an elementary step...Ch. 16 - Is it possible for more than one mechanism to be...Ch. 16 - What is the difference between a reaction...Ch. 16 - Why is a bimolecular step more reasonable...Ch. 16 - Prob. 16.74PCh. 16 - If a fast step precedes a slow step in a two-step...Ch. 16 - Prob. 16.76PCh. 16 - Prob. 16.77PCh. 16 - In a study of nitrosyl halides, a chemist proposes...Ch. 16 - Prob. 16.79PCh. 16 - Consider the reaction .
Does the gold catalyst...Ch. 16 - Does a catalyst increase reaction rate by the same...Ch. 16 - In a classroom demonstration, hydrogen gas and...Ch. 16 - Prob. 16.83PCh. 16 - Prob. 16.84PCh. 16 - Prob. 16.85PCh. 16 - Consider the following reaction energy...Ch. 16 - Prob. 16.87PCh. 16 - Prob. 16.88PCh. 16 - A slightly bruised apple will rot extensively in...Ch. 16 - Prob. 16.90PCh. 16 - Prob. 16.91PCh. 16 - Prob. 16.92PCh. 16 - Prob. 16.93PCh. 16 - The citric acid cycle is the central reaction...Ch. 16 - Prob. 16.95PCh. 16 - Prob. 16.96PCh. 16 - Prob. 16.97PCh. 16 - Prob. 16.98PCh. 16 - For the reaction A(g) + B(g) ⟶ AB(g), the rate is...Ch. 16 - The acid-catalyzed hydrolysis of sucrose occurs by...Ch. 16 - At body temperature (37°C), the rate constant of...Ch. 16 - Is each of these statements true? If not, explain...Ch. 16 - Prob. 16.103PCh. 16 - Suggest an experimental method for measuring the...Ch. 16 - Prob. 16.105PCh. 16 - Many drugs decompose in blood by a first-order...Ch. 16 - Prob. 16.107PCh. 16 - Prob. 16.108PCh. 16 - Prob. 16.109PCh. 16 - Prob. 16.110PCh. 16 - Prob. 16.111PCh. 16 - Prob. 16.112PCh. 16 - Prob. 16.113PCh. 16 - Prob. 16.114PCh. 16 - Prob. 16.115PCh. 16 - Prob. 16.116PCh. 16 - Prob. 16.117PCh. 16 - Prob. 16.118PCh. 16 - The growth of Pseudomonas bacteria is modeled as a...Ch. 16 - Prob. 16.120PCh. 16 - Prob. 16.121PCh. 16 - Prob. 16.122PCh. 16 - Prob. 16.123PCh. 16 - Prob. 16.124PCh. 16 - Prob. 16.125PCh. 16 - Human liver enzymes catalyze the degradation of...Ch. 16 - Prob. 16.127PCh. 16 - Prob. 16.128P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Sucrose, a sugar, decomposes in acid solution to give glucose and fructose. The reaction is first-order in sucrose, and the rate constant at 25 C is k = 0.21 h1. If the initial concentration of sucrose is 0.010 mol/L, what is its concentration after 5.0 h?arrow_forwardThe decomposition of iodoethane in the gas phase proceeds according to the following equation: C2H5I(g)C2H4(g)+HI(g) At 660. K, k = 7.2 104 sl; at 720. K, k = 1.7 102 sl. What is the value of the rate constant for this first-order decomposition at 325C? If the initial pressure of iodoethane is 894 torr at 245C, what is the pressure of iodoethane after three half-lives?arrow_forwardFor a reaction involving the decomposition of Z at a certain temperature, the following data are obtained: (a) What is the order of the reaction? (b) Write the rate expression for the decomposition of Z. (c) Calculate k for the decomposition at that temperature.arrow_forward
- When boron trifluoride reacts with ammonia, the following reaction occurs: BF3(g)+NH3(g)BF3NH3(g)The following data are obtained at a particular temperature: (a) What is the order of the reaction with respect to BF3, NH3, and overall? (b) Write the rate expression for the reaction. (c) Calculate k for the reaction. (d) When [ BF3 ]=0.533M and NH3=0.300M, what is the rate of the reaction at the temperature of the experiment?arrow_forwardFor a reaction involving the decomposition of a hypothetical substance Y, these data are obtained: Determine the order of the reaction. Write the rate law for the decomposition of Y. Calculate k for the experiment above.arrow_forwardThe frequency factor A is 6.31 108 L mol1 s1 and the activation energy is 10. kJ/mol for the gas-phase reaction NO(g)+O3(g)NO2(g)+O2(g) which is important in the chemistry of stratospheric ozone depletion. (a) Calculate the rate constant for this reaction at 370. K. (b) Assuming that this is an elementary reaction, calculate the rate of the reaction at 370. K if [NO] = 0.0010 M and [O3] = 0.00050 M.arrow_forward
- The half-life of tritium, 3H, is 12.26 years. Tritium is the radioactive isotope of hydrogen. (a) What is the rate constant for the radioactive decay of tritium, in y1 and s1? (b) What percentage of the original tritium is left after 61.3 years?arrow_forwardThe hydrolysis of the sugar sucrose to the sugars glucose and fructose, C12H22O11+H2OC6H12O6+C6H12O6 follows a first-order rate equation for the disappearance of sucrose: Rate =k[C12H22O11] (The products of the reaction, glucose and fructose, have the same molecular formulas but differ in the arrangement of the atoms in their molecules.) (a) In neutral solution, k=2.11011s1 at 27 C and 8.51011s1 at 37 C. Determine the activation energy, the frequency factor, and the rate constant for this equation at 47 C (assuming the kinetics remain consistent with the Arrhenius equation at this temperature). (b) When a solution of sucrose with an initial concentration of 0.150 M reaches equilibrium, the concentration of sucrose is 1.65107M . How long will it take the solution to reach equilibrium at 27 C in the absence of a catalyst? Because the concentration of sucrose at equilibrium is so low, assume that the reaction is irreversible. (c) Why does assuming that the reaction is irreversible simplify the calculation in pan (b)?arrow_forwardHydrogen iodide decomposes when heated, forming H2(g) and I2(g). The rate law for this reaction is [HI]/t = k[HI]2. At 443C, k = 30. L/mol min. If the initial HI(g) concentration is 1.5 102 mol/L, what concentration of HI(g) will remain after 10. minutes?arrow_forward
- Diethylhydrazine reacts with iodine according to the following equation: Â (C2H5)2(NH)2(l)+I2(aq)(C2H5)2N2+2HI(aq)The rate of the reaction is followed by monitoring the disappearance of the purple color due to iodine. The following data are obtained at a certain temperature. (a) What is the order of the reaction with respect to diethylhydrazine, iodine, and overall? (b) Write the rate expression of the reaction. (c) Calculate k for the reaction. (d) What must [(C2H5)2] be so that the rate of the reaction is 5.00104mol/Lh when [ I2 ]=0.500M?arrow_forwardThe initial concentration of the reactant in a tirst-order reaction A —» products is 0.64 rnol/L and the half-life is 30.0 s. Calculate the concentration of the reactant exactly 60 s after initiation of the reaction. How long would it take for the concentration of the reactant to drop to one-eighth its initial value? How long would it take for the concentration of the reactant to drop to 0.040 mol/L?arrow_forwardIn the presence of excess thiocyanate ion, SCN, the following reaction is first order in iron(III) ion, Fe3+; the rate constant is 1.27/s. Fe3+(aq)+SCN(aq)Fe(SCN)2+(aq) What is the half-life in seconds? How many seconds would be required for the initial concentration of Fe3+ to decrease to each of the following values: 25.0% left, 12.5% left, 6.25% left, 3.125% left? What is the relationship between these times and the half-life?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Kinetics: Initial Rates and Integrated Rate Laws; Author: Professor Dave Explains;https://www.youtube.com/watch?v=wYqQCojggyM;License: Standard YouTube License, CC-BY