CHEMISTRY: THE MOLECULAR NATURE OF MATTE
9th Edition
ISBN: 9781265974688
Author: SILBERBERG
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Question
Chapter 16, Problem 16.47P
Interpretation Introduction
Interpretation: The time it will take for the reactant to reduce one-third of its initial concentration where reaction follows second-order kinetics is to be determined.
Concept Introduction: A reaction is said to be of second order if the rate is dependent on the second power of the concentration of the reactants.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
For the simple decomposition reaction AB(g)→A(g) + B(g) rate = k[AB]2 and k = 0.55 L/mol·s. How long will it take for [AB] to reach 1/3 of its initial concentration of 1.50 M?
For the simple decomposition reaction AB(g)→A(g)+B(g) rate k=[AB]² and k=0.2 L/mol s. How long will it take for[AB] to reach one-third of its initial concentration of 1.50 M?
O to 185s? 185 to 416? 416 to 815 s?
The decomposition of N,O, can be described by the equation
2 N,0,(soln) → 4 NO, (soln) + 0, (g)
Consider the data in the table for the reaction at 45 °C in carbon tetrachloride solution.
t (s)
[N,0,] (M)
1.876
185
1.670
416
1.444
815
1.124
Given the data, calculate the average rate of reaction for each successive time interval.
Chapter 16 Solutions
CHEMISTRY: THE MOLECULAR NATURE OF MATTE
Ch. 16.2 - Balance the following equation and express the...Ch. 16.2 - Prob. 16.1BFPCh. 16.3 - Prob. 16.2AFPCh. 16.3 - Prob. 16.2BFPCh. 16.3 - Find the rate law, the individual and overall...Ch. 16.3 - Prob. 16.3BFPCh. 16.3 - Prob. 16.4AFPCh. 16.3 - Prob. 16.4BFPCh. 16.4 - Prob. 16.5AFPCh. 16.4 - Prob. 16.5BFP
Ch. 16.4 - Substance X (black) changes to substance Y (red)...Ch. 16.4 - Prob. 16.6BFPCh. 16.4 - Prob. 16.7AFPCh. 16.4 - Prob. 16.7BFPCh. 16.4 - Prob. 16.8AFPCh. 16.4 - Prob. 16.8BFPCh. 16.5 - Prob. 16.9AFPCh. 16.5 - Prob. 16.9BFPCh. 16.5 - Prob. 16.10AFPCh. 16.5 - Prob. 16.10BFPCh. 16.6 - Prob. 16.11AFPCh. 16.6 - Prob. 16.11BFPCh. 16.6 - Prob. 16.12AFPCh. 16.6 - Prob. 16.12BFPCh. 16.7 - Prob. 16.1PCh. 16.7 - Aircraft in the stratosphere release NO, which...Ch. 16.7 - Prob. 16.3PCh. 16 - Prob. 16.1PCh. 16 - Prob. 16.2PCh. 16 - A reaction is carried out with water as the...Ch. 16 - Prob. 16.4PCh. 16 - Prob. 16.5PCh. 16 - Prob. 16.6PCh. 16 - Prob. 16.7PCh. 16 - Prob. 16.8PCh. 16 - Prob. 16.9PCh. 16 - Prob. 16.10PCh. 16 - Prob. 16.11PCh. 16 - Prob. 16.12PCh. 16 - Prob. 16.13PCh. 16 - Prob. 16.14PCh. 16 - Prob. 16.15PCh. 16 - Prob. 16.16PCh. 16 - Prob. 16.17PCh. 16 - Prob. 16.18PCh. 16 - Prob. 16.19PCh. 16 - Prob. 16.20PCh. 16 - Prob. 16.21PCh. 16 - Prob. 16.22PCh. 16 - Prob. 16.23PCh. 16 - Prob. 16.24PCh. 16 - Prob. 16.25PCh. 16 - Prob. 16.26PCh. 16 - Prob. 16.27PCh. 16 - Prob. 16.28PCh. 16 - By what factor does the rate in Problem 16.27...Ch. 16 - Prob. 16.30PCh. 16 - Prob. 16.31PCh. 16 - Prob. 16.32PCh. 16 - Prob. 16.33PCh. 16 - Prob. 16.34PCh. 16 - Prob. 16.35PCh. 16 - Prob. 16.36PCh. 16 - Give the overall reaction order that corresponds...Ch. 16 - Phosgene is a toxic gas prepared by the reaction...Ch. 16 - How are integrated rate laws used to determine...Ch. 16 - Define the half-life of a reaction. Explain on the...Ch. 16 - Prob. 16.41PCh. 16 - Prob. 16.42PCh. 16 - The first-order rate constant for the reaction A...Ch. 16 - The molecular scenes below represent the...Ch. 16 - In a first-order decomposition reaction, 50.0% of...Ch. 16 - A decomposition reaction has a rate constant of...Ch. 16 - Prob. 16.47PCh. 16 - Prob. 16.48PCh. 16 - In a study of ammonia production, an industrial...Ch. 16 - Prob. 16.50PCh. 16 - Prob. 16.51PCh. 16 - Prob. 16.52PCh. 16 - Prob. 16.53PCh. 16 - Prob. 16.54PCh. 16 - Prob. 16.55PCh. 16 - Prob. 16.56PCh. 16 - Prob. 16.57PCh. 16 - Assuming the activation energies are equal, which...Ch. 16 - For the reaction A(g) + B(g) ⟶AB(g), how many...Ch. 16 - Prob. 16.60PCh. 16 - Prob. 16.61PCh. 16 - For the reaction A2 + B2 → 2AB, Ea(fwd) = 125...Ch. 16 - Prob. 16.63PCh. 16 - Prob. 16.64PCh. 16 - The rate constant of a reaction is 4.7×10−3 s−1 at...Ch. 16 - The rate constant of a reaction is 4.50×10−5...Ch. 16 - Prob. 16.67PCh. 16 - Prob. 16.68PCh. 16 - Prob. 16.69PCh. 16 - Explain why the coefficients of an elementary step...Ch. 16 - Is it possible for more than one mechanism to be...Ch. 16 - What is the difference between a reaction...Ch. 16 - Why is a bimolecular step more reasonable...Ch. 16 - Prob. 16.74PCh. 16 - If a fast step precedes a slow step in a two-step...Ch. 16 - Prob. 16.76PCh. 16 - Prob. 16.77PCh. 16 - In a study of nitrosyl halides, a chemist proposes...Ch. 16 - Prob. 16.79PCh. 16 - Consider the reaction .
Does the gold catalyst...Ch. 16 - Does a catalyst increase reaction rate by the same...Ch. 16 - In a classroom demonstration, hydrogen gas and...Ch. 16 - Prob. 16.83PCh. 16 - Prob. 16.84PCh. 16 - Prob. 16.85PCh. 16 - Consider the following reaction energy...Ch. 16 - Prob. 16.87PCh. 16 - Prob. 16.88PCh. 16 - A slightly bruised apple will rot extensively in...Ch. 16 - Prob. 16.90PCh. 16 - Prob. 16.91PCh. 16 - Prob. 16.92PCh. 16 - Prob. 16.93PCh. 16 - The citric acid cycle is the central reaction...Ch. 16 - Prob. 16.95PCh. 16 - Prob. 16.96PCh. 16 - Prob. 16.97PCh. 16 - Prob. 16.98PCh. 16 - For the reaction A(g) + B(g) ⟶ AB(g), the rate is...Ch. 16 - The acid-catalyzed hydrolysis of sucrose occurs by...Ch. 16 - At body temperature (37°C), the rate constant of...Ch. 16 - Is each of these statements true? If not, explain...Ch. 16 - Prob. 16.103PCh. 16 - Suggest an experimental method for measuring the...Ch. 16 - Prob. 16.105PCh. 16 - Many drugs decompose in blood by a first-order...Ch. 16 - Prob. 16.107PCh. 16 - Prob. 16.108PCh. 16 - Prob. 16.109PCh. 16 - Prob. 16.110PCh. 16 - Prob. 16.111PCh. 16 - Prob. 16.112PCh. 16 - Prob. 16.113PCh. 16 - Prob. 16.114PCh. 16 - Prob. 16.115PCh. 16 - Prob. 16.116PCh. 16 - Prob. 16.117PCh. 16 - Prob. 16.118PCh. 16 - The growth of Pseudomonas bacteria is modeled as a...Ch. 16 - Prob. 16.120PCh. 16 - Prob. 16.121PCh. 16 - Prob. 16.122PCh. 16 - Prob. 16.123PCh. 16 - Prob. 16.124PCh. 16 - Prob. 16.125PCh. 16 - Human liver enzymes catalyze the degradation of...Ch. 16 - Prob. 16.127PCh. 16 - Prob. 16.128P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Substances that poison a catalyst pose a major concern for many engineering designs, including those for catalytic converters. One design option is to add materials that react with potential poisons before they reach the catalyst. Among the commonly encountered catalyst poisons are silicon and phosphorus, which typically form phosphate or silicate ions in the oxidizing environment of an engine. Group 2 elements are added to the catalyst to react with these contaminants before they reach the working portion of the catalytic converter. If estimates show that a catalytic converter will be exposed to 625 g of silicon during its lifetime, what mass of beryllium would need to be included in the design?arrow_forwardOne of the concerns about the use of Freons is that they will migrate to the upper atmosphere, where chlorine atoms can be generated by the following reaction: CCl2F2(g)Freon-12hvCF2Cl(g)+Cl(g) Chlorine atoms can act as a catalyst for the destruction of ozone. The activation energy for the reaction Cl(g) + O3(g) ClO(g) + O2(g) Is 2.1 kJ/mol. Which is the more effective catalyst for the destruction of ozone, Cl or NO? (See Exercise 75.)arrow_forwardWhich reaction mechanism assumptions are unimportant in describing simple ionic reactions between cations and anions? Why?arrow_forward
- Consider the following statements: In general, the rate of a chemical reaction increases a bit at first because it takes a while for the reaction to get warmed up. After that, however, the rate of the reaction decreases because its rate is dependent on the concentrations of the reactants, and these are decreasing. Indicate everything that is correct in these statements, and indicate everything that is incorrect. Correct the incorrect statements and explain.arrow_forwardOld-fashioned smelling salts consist of ammonium carbonate, (NH4)2CO3. The reaction for the decomposition of ammonium carbonate (NH4)2CO3(s)2NH3(g)+CO(g)+H2O(g) is endothermic. Would the smell of ammonia increase or decrease as the temperature is increased?arrow_forwardThe Raschig reaction produces the industrially important reducing agent hydrazine, N2H4, from ammonia, NH3, and hypochlorite ion, OCl−, in basic aqueous solution. A proposed mechanism is Step 1: Step 2: Step 3: What is the overall stoichiometric equation? Which step is rate-limiting? What reaction intermediates are involved? What rate law is predicted by this mechanism?arrow_forward
- For the reaction of crystal violet with NaOH(aq), the measured rate of reaction is 1.27 106 mol L1 s1 when the concentration of crystal violet cation is 4.13 105 mol/L. (a) Estimate how long it will take for the concentration of crystal violet to drop from 4.30 105 mol/L to 3.96 105 mol/L. (b) Could you use the same method to make an accurate estimate of how long it would take for the concentration of crystal violet to drop from 4.30 105 mol/L to 0.43 105 mol/L? Explain why or why not.arrow_forwardSilicon forms a series of compounds analogous to the al-kanes and having the general formula SinH2n+2. The first of these compounds is silane, SiH4, which is used in the electronics industry to produce thin ultrapure silicon films. SiH4(g) is somewhat difficult to work with because it is py-ropboric at room temperature—meaning that it bursts into flame spontaneously when exposed to air. (a) Write an equation for the combustion of SiH4(g). (The reaction is analogous to hydrocarbon combustion, and SiO2 is a solid under standard conditions. Assume the water produced will be a gas.) (b) Use the data from Appendix E to calculate ? for this reaction. (c) Calculate G and show that the reaction is spontaneous at 25°C. (d) Compare G for this reaction to the combustion of methane. (See the previous problem.) Are the reactions in these two exercises enthalpy or entropy driven? Explain.arrow_forwardIn Chapter 3, we discussed the conversion of biomass into biofuels. One important area of research associated with biofuels is the identification and development of suitable catalysts to increase the rate at which fuels can be produced. Do a web search to find an article describing biofuel catalysts. Then, write one or two sentences describing the reactions being catalyzed, and identify the catalyst as homogeneous or heterogeneous.arrow_forward
- Consider the reaction of ozone and nitrogen monoxide to form nitrogen dioxide and oxygen. O3(g) + NO(g) NO2(g) + O2(g) Which of the following orientations for the collision between ozone and nitrogen monoxide could perhaps lead to an effective collision between the molecules? (a) (b) (c) (d)arrow_forwardThe reaction NO(g) + O,(g) — NO,(g) + 0(g) plays a role in the formation of nitrogen dioxide in automobile engines. Suppose that a series of experiments measured the rate of this reaction at 500 K and produced the following data; [NO] (mol L ’) [OJ (mol L 1) Rate = -A[NO]/Af (mol L_1 s-1) 0.002 0.005 8.0 X 10"'7 0.002 0.010 1.6 X 10-'6 0.006 0.005 2.4 X IO-'6 Derive a rate law for the reaction and determine the value of the rate constant.arrow_forwardFor a first order gas phase reaction A products, k = 7.2 104s1 at 660. K and k = 1.7 102s1 at 720. K. If the initial pressure of A is 536 torr at 295C, how long will it take for the pressure of A to decrease to 268 torr?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Kinetics: Initial Rates and Integrated Rate Laws; Author: Professor Dave Explains;https://www.youtube.com/watch?v=wYqQCojggyM;License: Standard YouTube License, CC-BY