(a) Interpretation: The reason for the negative value of Δ S ∘ when number of gaseous molecules increases in a system needs to be determined. Concept introduction: Entropy is defined as degree of randomness in a system. It is due to the random motion of molecules in the reaction system. The entropy of a gaseous system is more than a liquid system as gaseous molecules are in constant motion. If number of gaseous molecules increases, entropy also increases.
(a) Interpretation: The reason for the negative value of Δ S ∘ when number of gaseous molecules increases in a system needs to be determined. Concept introduction: Entropy is defined as degree of randomness in a system. It is due to the random motion of molecules in the reaction system. The entropy of a gaseous system is more than a liquid system as gaseous molecules are in constant motion. If number of gaseous molecules increases, entropy also increases.
Solution Summary: The author explains that entropy is defined as degree of randomness in a system, due to the random motion of molecules in the reaction system.
The reason for the negative value of ΔS∘ when number of gaseous molecules increases in a system needs to be determined.
Concept introduction:
Entropy is defined as degree of randomness in a system. It is due to the random motion of molecules in the reaction system. The entropy of a gaseous system is more than a liquid system as gaseous molecules are in constant motion. If number of gaseous molecules increases, entropy also increases.
Interpretation Introduction
(b)
Interpretation:
The reason for ΔS∘ value to be independent of T needs to be explained.
Concept introduction:
Entropy is defined as degree of randomness in a system. It is due to the random motion of molecules in the reaction system. The entropy of a gaseous system is more than a liquid system as gaseous molecules are in constant motion. If temperature of a system is increased, the random movement of molecules of gases increases.
Interpretation Introduction
(c)
Interpretation:
The reason for a solid to have lower entropy than liquid needs to be explained.
Concept introduction:
Entropy is defined as degree of randomness in a system. It is due to the random motion of molecules in the reaction system. The entropy of a gaseous system is more than a liquid system as gaseous molecules are in constant motion.
Please help me with number 1-3. Thank you so much.
Draw the major product of this reaction ingnore the inorganic byproducts. 1. NaOCH2CH3 at 25 C 2. PhCH2Br (1 eq)
At 90ºC the vapor pressure of ortho-xylene is 20 kPa and that of meta-xylene is 18 kPa. What is the composition of the vapor in equilibrium with a mixture in which the mole fraction of o-xylene is 0.60?
Chapter 16 Solutions
Student Solutions Manual For Masterton/hurley's Chemistry: Principles And Reactions, 8th
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY