PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
6th Edition
ISBN: 9781429206099
Author: Tipler
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 16, Problem 7P
To determine
The longest wavelength as a result of which the student hears “extra loud” sound due to constructive interference.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
s23
Two loudspeakers, A and B (Fig. ), are driven by thesame amplifier and emit sinusoidal waves in phase. Speaker B is 2.00 mto the right of speaker A. Consider point Q along the extension ofthe line connecting the speakers, 1.00 m to the right of speaker B.Both speakers emit sound waves that travel directly from the speaker topoint Q. What is the lowest frequency for which (a) constructive interferenceoccurs at point Q; (b) destructive interference occurs at point Q?
The shortest distance between a sound source (S,) and a reflecting wall is 25 m. The sound is reflected at an angle of a, = 45° to
a listener (L,).
(a) What is the shortest distance between the sound source and the listener, (x1)?
(b) The sound is also reflected to another listener (L2) at an angle of a2= 80°. What is the length of the reflector between the two
reflection points, (x2)?
X2 = ?
Reflector
a2
a1
L2
L1
S1
X1 = ?
Chapter 16 Solutions
PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
Ch. 16 - Prob. 1PCh. 16 - Prob. 2PCh. 16 - Prob. 3PCh. 16 - Prob. 4PCh. 16 - Prob. 5PCh. 16 - Prob. 6PCh. 16 - Prob. 7PCh. 16 - Prob. 8PCh. 16 - Prob. 9PCh. 16 - Prob. 10P
Ch. 16 - Prob. 11PCh. 16 - Prob. 12PCh. 16 - Prob. 13PCh. 16 - Prob. 14PCh. 16 - Prob. 15PCh. 16 - Prob. 16PCh. 16 - Prob. 17PCh. 16 - Prob. 18PCh. 16 - Prob. 19PCh. 16 - Prob. 20PCh. 16 - Prob. 21PCh. 16 - Prob. 22PCh. 16 - Prob. 23PCh. 16 - Prob. 24PCh. 16 - Prob. 25PCh. 16 - Prob. 26PCh. 16 - Prob. 27PCh. 16 - Prob. 28PCh. 16 - Prob. 29PCh. 16 - Prob. 30PCh. 16 - Prob. 31PCh. 16 - Prob. 32PCh. 16 - Prob. 33PCh. 16 - Prob. 34PCh. 16 - Prob. 35PCh. 16 - Prob. 36PCh. 16 - Prob. 37PCh. 16 - Prob. 38PCh. 16 - Prob. 39PCh. 16 - Prob. 40PCh. 16 - Prob. 41PCh. 16 - Prob. 42PCh. 16 - Prob. 43PCh. 16 - Prob. 44PCh. 16 - Prob. 45PCh. 16 - Prob. 46PCh. 16 - Prob. 47PCh. 16 - Prob. 48PCh. 16 - Prob. 49PCh. 16 - Prob. 50PCh. 16 - Prob. 51PCh. 16 - Prob. 52PCh. 16 - Prob. 53PCh. 16 - Prob. 54PCh. 16 - Prob. 55PCh. 16 - Prob. 56PCh. 16 - Prob. 57PCh. 16 - Prob. 58PCh. 16 - Prob. 59PCh. 16 - Prob. 60PCh. 16 - Prob. 61PCh. 16 - Prob. 62PCh. 16 - Prob. 63PCh. 16 - Prob. 64PCh. 16 - Prob. 65PCh. 16 - Prob. 66PCh. 16 - Prob. 67PCh. 16 - Prob. 68PCh. 16 - Prob. 69PCh. 16 - Prob. 70PCh. 16 - Prob. 71PCh. 16 - Prob. 72PCh. 16 - Prob. 73PCh. 16 - Prob. 74PCh. 16 - Prob. 75PCh. 16 - Prob. 76PCh. 16 - Prob. 77PCh. 16 - Prob. 78PCh. 16 - Prob. 79PCh. 16 - Prob. 80PCh. 16 - Prob. 81PCh. 16 - Prob. 82PCh. 16 - Prob. 83PCh. 16 - Prob. 84PCh. 16 - Prob. 85PCh. 16 - Prob. 86P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two identical speakers are initially equal distancesfrom a listener . Thelistener hears a sound maximum (constructiveinterference). When the upper speaker is moved backby a distance d = 2 m, the listener hears a soundminimum (destructive interference). What is thelongest wavelength the soundwaves could have?arrow_forwardDiego is standing 7.0 m North of a pair of adjacent speakers which are facing him. The speakers are coherently producing a frequency of 686 Hz. Diego's friend, Shalanda, is going to move one of the speakers directly East. How far away from the sta- tionary speaker should Shaland move the other one such that the sound cancels out where Diego is standing? Find the mini- mum amount it should be moved. Hint: what is the condition for coherent waves to cancel?arrow_forwardLoud speech, measured at 3 meters away, has a sound intensity level LI of 73dB. Find the corresponding intensity I.arrow_forward
- Your ear is capable of differentiating sounds that arrive at the ear just 1.00 ms apart. What is the minimum distance (in cm) between two speakers that produce sounds that arrive at noticeably different times on a day when the speed of sound is 348 m/s? cmarrow_forwardQuestion in attachmentsarrow_forward. A small reverberation chamber 8ftx9ft x10ft effective sound absorption coefficient of certain acoustical tile. The observed is employed to measure the reverberation time is 5.0 second, or 1.0 second when 40 ft of acoustical tiles is used to cover part of one wall of the chamber. Find the effective sound absorption coefficient of the tile. sw (0.71)arrow_forward
- Find the wavelength in air of an 22-Hz sound wave at 486 m/s, which is one of the lowest frequencies that are detectable by the human ear. No need to include the unit. Write your answer in whole numbers.arrow_forwardA certain instant camera determines the dis- tance to the subject by sending out a sound wave and measuring the time needed for the wave echo to return to the camera. How long would it take the sound wave to return to the camera if the subject were 2.07 m away? The speed of sound is 343 m/s. Answer in units of s.arrow_forwardVerify your answer pleasearrow_forward
- The sound from a trumpet radiates uniformly in alldirections in 20°C air. At a distance of 5.00 m from the trumpet thesound intensity level is 52.0 dB. The frequency is 587 Hz. What is the displacementamplitude?arrow_forwardOne clue used by your brain to determine the direction of a source of sound is the time delay t between the arrival of the sound at the ear closer to the source and the arrival at the farther ear.Assume that the source is distant so that a wavefront from it is approximately planar when it reaches you, and let D represent the separation between your ears. (a) If the source is located at angle u in front of you , what is in terms of D and the speed of sound v in air? (b) If you are submerged in water and the sound source is directly to your right, what is t in terms of D and the speed of sound vw in water? (c) Based on the time-delay clue, your brain interprets the submerged sound to arrive at an angle u from the forward direction. Evaluate u for fresh water at 20C.arrow_forwardA speaker has a diameter of 0.30 m. (a) Assuming that the speed of sound is 343 m/s, find the diffraction angle u for a 2.0-kHz tone. (b) What speaker diameter D should be used to generate a 6.0-kHz tone whose diffraction angle is as wide as that for the 2.0-kHz tone in part (a)?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Spectra Interference: Crash Course Physics #40; Author: CrashCourse;https://www.youtube.com/watch?v=-ob7foUzXaY;License: Standard YouTube License, CC-BY