PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
6th Edition
ISBN: 9781429206099
Author: Tipler
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 16, Problem 4P
To determine
To Choose: The correct option.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Sound is detected when a sound wave causes the tympanic membrane (the ear drum) to vibrate. Typically, the diameter of this membrane is about 8.4 mm in humans. A) how much energy is delivered to the eardrum each second when someone whispers (20 dB) into your ear? B) to comprehend how sensitive the ear is to very small amounts of energy, calculate how fast a typical 2.0 mg mosquito would have to fly (in mm/s) to have this amount of kinetic energy.
given that the density of air 1.20 kg/m^3 and the speed of sound 343 m/s *
A vacuum cleaner produces sound with a measured sound
level of 70.0 dB. (a) What is the intensity of this sound in
W/m? (b) What is the pressure amplitude of the sound?
Two adjacent natural frequencies of an organ pipe are found to be 616 Hz and 792 Hz.
(a) Calculate the fundamental frequency.
(b) What is the length of the pipe?
Chapter 16 Solutions
PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
Ch. 16 - Prob. 1PCh. 16 - Prob. 2PCh. 16 - Prob. 3PCh. 16 - Prob. 4PCh. 16 - Prob. 5PCh. 16 - Prob. 6PCh. 16 - Prob. 7PCh. 16 - Prob. 8PCh. 16 - Prob. 9PCh. 16 - Prob. 10P
Ch. 16 - Prob. 11PCh. 16 - Prob. 12PCh. 16 - Prob. 13PCh. 16 - Prob. 14PCh. 16 - Prob. 15PCh. 16 - Prob. 16PCh. 16 - Prob. 17PCh. 16 - Prob. 18PCh. 16 - Prob. 19PCh. 16 - Prob. 20PCh. 16 - Prob. 21PCh. 16 - Prob. 22PCh. 16 - Prob. 23PCh. 16 - Prob. 24PCh. 16 - Prob. 25PCh. 16 - Prob. 26PCh. 16 - Prob. 27PCh. 16 - Prob. 28PCh. 16 - Prob. 29PCh. 16 - Prob. 30PCh. 16 - Prob. 31PCh. 16 - Prob. 32PCh. 16 - Prob. 33PCh. 16 - Prob. 34PCh. 16 - Prob. 35PCh. 16 - Prob. 36PCh. 16 - Prob. 37PCh. 16 - Prob. 38PCh. 16 - Prob. 39PCh. 16 - Prob. 40PCh. 16 - Prob. 41PCh. 16 - Prob. 42PCh. 16 - Prob. 43PCh. 16 - Prob. 44PCh. 16 - Prob. 45PCh. 16 - Prob. 46PCh. 16 - Prob. 47PCh. 16 - Prob. 48PCh. 16 - Prob. 49PCh. 16 - Prob. 50PCh. 16 - Prob. 51PCh. 16 - Prob. 52PCh. 16 - Prob. 53PCh. 16 - Prob. 54PCh. 16 - Prob. 55PCh. 16 - Prob. 56PCh. 16 - Prob. 57PCh. 16 - Prob. 58PCh. 16 - Prob. 59PCh. 16 - Prob. 60PCh. 16 - Prob. 61PCh. 16 - Prob. 62PCh. 16 - Prob. 63PCh. 16 - Prob. 64PCh. 16 - Prob. 65PCh. 16 - Prob. 66PCh. 16 - Prob. 67PCh. 16 - Prob. 68PCh. 16 - Prob. 69PCh. 16 - Prob. 70PCh. 16 - Prob. 71PCh. 16 - Prob. 72PCh. 16 - Prob. 73PCh. 16 - Prob. 74PCh. 16 - Prob. 75PCh. 16 - Prob. 76PCh. 16 - Prob. 77PCh. 16 - Prob. 78PCh. 16 - Prob. 79PCh. 16 - Prob. 80PCh. 16 - Prob. 81PCh. 16 - Prob. 82PCh. 16 - Prob. 83PCh. 16 - Prob. 84PCh. 16 - Prob. 85PCh. 16 - Prob. 86P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A pipe is observed to have a fundamental frequency of 345 Hz. Assume the pipe is filled with air (v = 343 m/s). What is the length of the pipe if the pipe is a. closed at one end and b. open at both ends?arrow_forwardA sound wave in air has a pressure amplitude equal to 4.00 103 Pa. Calculate the displacement amplitude of the wave at a frequency of 10.0 kHz.arrow_forwardFor a person with normal hearing, the faintest sound thatcan be heard at a frequency of 400 Hz has a pressure amplitude of about6.0 * 10-5 Pa. Calculate the (a) intensity; (b) sound intensity level;(c) displacement amplitude of this sound wave at 20°C.arrow_forward
- A sound wave in air at 20°C has a frequency of 320 Hz anda displacement amplitude of 5.00 * 10-3 mm. For this sound wavecalculate the (a) pressure amplitude (in Pa); (b) intensity (in W/m2);(c) sound intensity level (in decibels).arrow_forwardA sound wave in air has a pressure amplitude of 4.00 Paand a frequency of 5.00 kHz. Take P 0 at the pointx 0 when . (a) What is P at x 0 when t 2.00 104 s? (b) What is P at x 0.020 0 m when t=0?arrow_forwardA sound wave in air has a frequnecy of 276 Hz and travels with a speed of 341 m/s. How far apart are the wave crests (compressions)?arrow_forward
- A person wears a hearing aid that uniformly increases the intensity level of all audible frequencies of sound by 30.0 dB. The hearing aid picks up sound having a frequency of 100 Hz and an intensity of 3.9e-10 W/m22. What is the intensity delivered to the eardrum?arrow_forwardA bat can detect small objects, such as an insect, whose size is approximately equal to one wavelength of the sound the bat makes. If bats emit a chirp at a frequency of 9.01 104 Hz, and if the speed of sound in air is 343 m/s, what is the smallest insect a bat can detect?arrow_forwardThe frequency of G, on the piano is 196.0 Hz. (a) What is the wavelength (in m) of sound' with this frequency as it travels in water at room temperature? 7.638 X m (b) What is the wavelength (in m) of sound with this frequency in helium at room temperature? 5.138 Need Help? Read Itarrow_forward
- A certain factory whistle can be heard up to a distance of 1.1 km. Assuming that the acoustic output of the whistle is uniform in all directions, at what distance from the factory (in km) is the intensity level of the whistle sound equal to 12 db? The threshold of human hearing is 1.0 * 10^-12 W/m^2.arrow_forwardDetermine the energy absorbed by the eardrum in 3.0 min if it has an area of 0.600 x 10^-4 m2 where the sound wave with intensity level of 80.0 dB is incident in it.arrow_forwardA bat can detect small objects, such as an insect, whose size is approximately equal to one wavelength of the sound the bat makes. If bats emit a chirp at a frequency of 64.0 kHz, and if the speed of sound in air is 340 m/s, what is the smallest insect a bat can detect?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
What Are Sound Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=GW6_U553sK8;License: Standard YouTube License, CC-BY