PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
6th Edition
ISBN: 9781429206099
Author: Tipler
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 16, Problem 56P
To determine
The length of pipes for different diameter.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A pipe of air closed at one end is measured to have a fundamental frequency of 583 Hz on a 20.0 ◦C day. The pipe is then filled with water. What is the frequency of the second overtone? Recall that the speed of sound in water is 1480 m/s. Focus on the formula used please, thanks in advance.
A string of length L = 2.5 m and mass m = 0.095 kg is fixed between two stationary points, and when the string is plucked a transverse wave of frequency f = 68 Hz is generated.
What is the strings linear density, ρ, in kilograms per meter?
Two strings, A and B, have respective mass densities A and py respectively. The linear mass density, Hp.
of string-B is nine times that of string-A (H = 9). If both strings have the same fundamental frequency
when kept at the same tension, then the ratio of their lengths L/LA is equal to:
O 1/3
1/9
O 3
9.
Chapter 16 Solutions
PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
Ch. 16 - Prob. 1PCh. 16 - Prob. 2PCh. 16 - Prob. 3PCh. 16 - Prob. 4PCh. 16 - Prob. 5PCh. 16 - Prob. 6PCh. 16 - Prob. 7PCh. 16 - Prob. 8PCh. 16 - Prob. 9PCh. 16 - Prob. 10P
Ch. 16 - Prob. 11PCh. 16 - Prob. 12PCh. 16 - Prob. 13PCh. 16 - Prob. 14PCh. 16 - Prob. 15PCh. 16 - Prob. 16PCh. 16 - Prob. 17PCh. 16 - Prob. 18PCh. 16 - Prob. 19PCh. 16 - Prob. 20PCh. 16 - Prob. 21PCh. 16 - Prob. 22PCh. 16 - Prob. 23PCh. 16 - Prob. 24PCh. 16 - Prob. 25PCh. 16 - Prob. 26PCh. 16 - Prob. 27PCh. 16 - Prob. 28PCh. 16 - Prob. 29PCh. 16 - Prob. 30PCh. 16 - Prob. 31PCh. 16 - Prob. 32PCh. 16 - Prob. 33PCh. 16 - Prob. 34PCh. 16 - Prob. 35PCh. 16 - Prob. 36PCh. 16 - Prob. 37PCh. 16 - Prob. 38PCh. 16 - Prob. 39PCh. 16 - Prob. 40PCh. 16 - Prob. 41PCh. 16 - Prob. 42PCh. 16 - Prob. 43PCh. 16 - Prob. 44PCh. 16 - Prob. 45PCh. 16 - Prob. 46PCh. 16 - Prob. 47PCh. 16 - Prob. 48PCh. 16 - Prob. 49PCh. 16 - Prob. 50PCh. 16 - Prob. 51PCh. 16 - Prob. 52PCh. 16 - Prob. 53PCh. 16 - Prob. 54PCh. 16 - Prob. 55PCh. 16 - Prob. 56PCh. 16 - Prob. 57PCh. 16 - Prob. 58PCh. 16 - Prob. 59PCh. 16 - Prob. 60PCh. 16 - Prob. 61PCh. 16 - Prob. 62PCh. 16 - Prob. 63PCh. 16 - Prob. 64PCh. 16 - Prob. 65PCh. 16 - Prob. 66PCh. 16 - Prob. 67PCh. 16 - Prob. 68PCh. 16 - Prob. 69PCh. 16 - Prob. 70PCh. 16 - Prob. 71PCh. 16 - Prob. 72PCh. 16 - Prob. 73PCh. 16 - Prob. 74PCh. 16 - Prob. 75PCh. 16 - Prob. 76PCh. 16 - Prob. 77PCh. 16 - Prob. 78PCh. 16 - Prob. 79PCh. 16 - Prob. 80PCh. 16 - Prob. 81PCh. 16 - Prob. 82PCh. 16 - Prob. 83PCh. 16 - Prob. 84PCh. 16 - Prob. 85PCh. 16 - Prob. 86P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- At t = 0, a transverse pulse in a wire is described by the function y=6.00x2+3.00 where xand y are in meters. If the pulse is traveling in the positive x direction with a speed of 4.50 m/s, write the function y(x, t) that describes this pulse.arrow_forward(a) Find the length of an organ pipe closed at one end that produces a fundamental frequency of 256 Hz when air temperature is 18.0°C. (b) What is its fundamental frequency at 25.0°C?arrow_forwardLoudness (L), in decibles (dB), of a sound of intensity I is defined to be L=10log( I/I0), where I0=10-12(W/M2) (watts per meter square) is the minimum intensity detectable by the human ear. A.) Find the loudness L, in decibles (dB), of a trombone given the intensity is 1010I0 B.) Find the intensity of a rock concert whose loudness is 115 decibles. C.) What is the NIOSH recommended Exposure Limit (REL) given in dB based on exposures at work 5 days per week?arrow_forward
- A guitar string is 104 cm long and has a mass of 3.10 g. From the bridge to the support post (L) is 50 cm, and thestring is under a tension of 540 N. What is the frequency of the first overtone?arrow_forwardSound is detected when a sound wave causes the tympanic membrane (the ear drum) to vibrate. Typically, the diameter of this membrane is about 8.4 mm in humans. A) how much energy is delivered to the eardrum each second when someone whispers (20 dB) into your ear? B) to comprehend how sensitive the ear is to very small amounts of energy, calculate how fast a typical 2.0 mg mosquito would have to fly (in mm/s) to have this amount of kinetic energy.arrow_forwardA musical instrument that has a tube closed at one end has a length of 31.5 cm long. On a particularly warm day when the temperature was recorded at 34.6ºC, a 2nd overtone was established. What was the frequency, in Hz, of the note for this situation? An accurate sketch of the standing wave is needed.arrow_forward
- A piccolo and a flute can be approximated as cylindrical tubes with both ends open. The lowest fundamental frequency produced by one kind of piccolo is 544.3 Hz, and that produced by one kind of flute is 263.8 Hz. What is the ratio of the piccolo's length to the flute's length?arrow_forwardA stretched string of length 84.0 cm vibrates in its mth mode. The separation distance from node to antinode is 6.00 cm. Take m=1 to denote the fundamental node, m=2 the first harmonic, and so on. What is the value of m?arrow_forwardSound level B in decibels is defined as () B = 10 log 1 x 10-12 w/m². The decibel where Io scale intensity for busy traffic is 83 dB. Two people having a loud conversation have a deci- bel intensity of 70 dB. What is the approximate combined sound intensity? Answer in units of W/m2.arrow_forward
- A violin string ? = 31.6 cm long and ? = 0.65 g⁄m linear mass density is tuned to play a La4 note at 440.0 Hz. This means that the string is at its fundamental oscillation mode, that is, you will be on that note without placing a finger on it. From this information: B. If the midpoint of the chord is displaced 1.80 mm transversely when found in the fundamental mode, what is the maximum speed ??á? of the midpoint of string?arrow_forwardA nylon string of length L=7 m has cross-secional area that varies with distance as A(x)=10-6(1+x/L), where A is in meters squared and xis in meters. The string is stretched between two rigid columns such that the tension in it is 130 N. Determine the time it takes for a transverse pulse in the string to travel from one end to the other. The density of nylon is 1.1 g/cm3.arrow_forwardA rod is fixed at one end and free at the other end. The rod produces a 3rd overtone of 7500Hz. The speed of the wave is at 3000 m/s. determine the length of the rod and the fundamental frequency.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
What Are Sound Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=GW6_U553sK8;License: Standard YouTube License, CC-BY