PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
6th Edition
ISBN: 9781429206099
Author: Tipler
Publisher: MAC HIGHER
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 16, Problem 71P

(a)

To determine

The maximum displacement and maximum speed of a point on the string a x=0.10m .

(a)

Expert Solution
Check Mark

Explanation of Solution

Given:

The wave function of standing wave is given as y(x,t)=(0.020)sin(4πx)cos(60πt) .

Formula used:

Write expression for wave function as maximum displacement.

  ymax(x)=(0.020)sin(4πx)........ (1)

Differentiate above expression for t .

  vymax(x)=(1.2πm/s)sin[(4πm1)x]....... (2)

Calculation:

Substitute 0.10m for x in equation (1).

  ymax(0.10m)=(0.020)sin(4π( 0.10m))ymax(0.10m)=0.019m

Substitute 0.10m for x in equation (2).

  vymax(0.10m)=(1.2πm/s)sin[(4π m 1)(0.10m)]vymax(0.10m)=3.6m/s

Conclusion:

Thus, the maximum displacement is 0.019m and maximum speed is 3.6m/s .

(b)

To determine

The maximum displacement and maximum speed of a point on the string a x=0.25m .

(b)

Expert Solution
Check Mark

Explanation of Solution

Given:

The wave function of standing wave is given as y(x,t)=(0.020)sin(4πx)cos(60πt) .

Formula used:

Write expression for wave function as maximum displacement.

  ymax(x)=(0.020)sin(4πx)........ (1)

Differentiate above expression for t .

  vymax(x)=(1.2πm/s)sin[(4πm1)x]....... (2)

Calculation:

Substitute 0.25m for x in equation (1).

  ymax(0.25m)=(0.020)sin(4π( 0.25m))ymax(0.25m)=0m

Substitute 0.25m for x in equation (2).

  vymax(0.25m)=(1.2πm/s)sin[(4π m 1)(0.25m)]vymax(0.25m)=0m/s

Conclusion:

Thus, the maximum displacement is 0m and maximum speed is 0m/s .

(c)

To determine

The maximum displacement and maximum speed of a point on the string a x=0.30m .

(c)

Expert Solution
Check Mark

Explanation of Solution

Given:

The wave function of standing wave is given as y(x,t)=(0.020)sin(4πx)cos(60πt) .

Formula used:

Write expression for wave function as maximum displacement.

  ymax(x)=(0.020)sin(4πx)........ (1)

Differentiate above expression for t .

  vymax(x)=(1.2πm/s)sin[(4πm1)x]....... (2)

Calculation:

Substitute 0.30m for x in equation (1).

  ymax(0.30m)=(0.020)sin(4π( 0.30m))ymax(0.30m)=0.011m

Substitute 0.30m for x in equation (2).

  vymax(0.30m)=(1.2πm/s)sin[(4π m 1)(0.30m)]vymax(0.30m)=2.2m/s

Conclusion:

Thus, the maximum displacement is 0.011m and maximum speed is 2.2m/s .

(d)

To determine

The maximum displacement and maximum speed of a point on the string a x=0.50m .

(d)

Expert Solution
Check Mark

Explanation of Solution

Given:

The wave function of standing wave is given as y(x,t)=(0.020)sin(4πx)cos(60πt) .

Formula used:

Write expression for wave function as maximum displacement.

  ymax(x)=(0.020)sin(4πx)........ (1)

Differentiate above expression for t .

  vymax(x)=(1.2πm/s)sin[(4πm1)x]....... (2)

Calculation:

Substitute 0.50m for x in equation (1).

  ymax(0.50m)=(0.020)sin(4π( 0.50m))ymax(0.50m)=0m

Substitute 0.50m for x in equation (2).

  vymax(0.50m)=(1.2πm/s)sin[(4π m 1)(0.50m)]vymax(0.50m)=0m/s

Conclusion:

Thus, the maximum displacement is 0m and maximum speed is 0m/s .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Four capacitors are connected as shown in the figure below. (Let C = 12.0 μF.) a C 3.00 με Hh. 6.00 με 20.0 με HE (a) Find the equivalent capacitance between points a and b. 5.92 HF (b) Calculate the charge on each capacitor, taking AV ab = 16.0 V. 20.0 uF capacitor 94.7 6.00 uF capacitor 67.6 32.14 3.00 µF capacitor capacitor C ☑ με με The 3 µF and 12.0 uF capacitors are in series and that combination is in parallel with the 6 μF capacitor. What quantity is the same for capacitors in parallel? μC 32.14 ☑ You are correct that the charge on this capacitor will be the same as the charge on the 3 μF capacitor. μC
In the pivot assignment, we observed waves moving on a string stretched by hanging weights. We noticed that certain frequencies produced standing waves. One such situation is shown below: 0 ст Direct Measurement ©2015 Peter Bohacek I. 20 0 cm 10 20 30 40 50 60 70 80 90 100 Which Harmonic is this? Do NOT include units! What is the wavelength of this wave in cm with only no decimal places? If the speed of this wave is 2500 cm/s, what is the frequency of this harmonic (in Hz, with NO decimal places)?
Four capacitors are connected as shown in the figure below. (Let C = 12.0 µF.) A circuit consists of four capacitors. It begins at point a before the wire splits in two directions. On the upper split, there is a capacitor C followed by a 3.00 µF capacitor. On the lower split, there is a 6.00 µF capacitor. The two splits reconnect and are followed by a 20.0 µF capacitor, which is then followed by point b. (a) Find the equivalent capacitance between points a and b. µF(b) Calculate the charge on each capacitor, taking ΔVab = 16.0 V. 20.0 µF capacitor  µC 6.00 µF capacitor  µC 3.00 µF capacitor  µC capacitor C  µC

Chapter 16 Solutions

PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
What Are Sound Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=GW6_U553sK8;License: Standard YouTube License, CC-BY