Essential University Physics Volume 1, Loose Leaf Edition (4th Edition)
4th Edition
ISBN: 9780135264669
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 16, Problem 64P
You’re considering purchasing a new sleeping bag whose manufacturer claims will keep you warm to −10°F. The bag has down insulation with 4.0-cm loft (thickness). Your body produces heat at the rate of 100 W and has area 1.5 m2. Considering only
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Seals may cool themselves by using thermal windows, patches on their bodies with much higher than average surface temperature. Suppose a seal has a 0.030 m2 thermal window at a temperature of 30°C. If the seal’s surroundings are a frosty -10°C, what is the net rate of energy loss by radiation? Assume an emissivity equal to that of a human.
The average thermal conductivity of the walls (including windows) and roof of a house in the figure shown below is 4.8 x 104 kW/m - °C, and their
average thickness is 21.4 cm. The house is heated with natural gas, with a heat of combustion (energy given off per cubic meter of gas burned) of
9,300 kcal/m3. How many cubic meters of gas must be burned each day to maintain an inside temperature of 24.0°C if the outside temperature is
0.0°C? Disregard surface air layers, radiation, and energy loss by heat through the ground.
34.68
Your response is within 10% of the correct value. This may be due to roundoff error, or you could have a mistake in your calculation. Carry out all
intermediate results to at least four-digit accuracy to minimize roundoff error. m3
137.00
5.00 m
00
8.00 m
10.0 m
The average thermal conductivity of the walls (including windows) and roof of a house in the figure shown below is 4.8 x 104 kW/m - °C, and their average thickness is 20.8 cm. The house is heated with natural gas, with a heat of combustion (energy given off per cubic
meter of gas burned) of 9,300 kcal/m3. How many cubic meters of gas must be burned each day to maintain an inside temperature of 27.3°C if the outside temperature is 0.0°C? Disregard surface air layers, radiation, and energy loss by heat through the ground.
m3
37.0
5.00 m
8.00 m
10.0 m
Chapter 16 Solutions
Essential University Physics Volume 1, Loose Leaf Edition (4th Edition)
Ch. 16.1 - Is there (a) no temperature, (b) one temperature,...Ch. 16.2 - A hot rock with mass 250 g is dropped into an...Ch. 16.3 - The figure shows three slabs with the same...Ch. 16.3 - Prob. 16.4GICh. 16.4 - A houses thermostat fails, leaving the furnace...Ch. 16 - If system A is not in thermodynamic equilibrium...Ch. 16 - Does a thermometer measure its own temperature or...Ch. 16 - Compare the relative sizes of the kelvin, the...Ch. 16 - If you put a thermometer in direct sunlight, what...Ch. 16 - Why does the temperature in a stone building...
Ch. 16 - Why do large bodies of water exert a...Ch. 16 - A Thermos bottle consists of an evacuated,...Ch. 16 - Stainless-steel cookware often has a layer of...Ch. 16 - Prob. 9FTDCh. 16 - Prob. 10FTDCh. 16 - Glass and fiberglass are made from the same...Ch. 16 - To keep your hands warm while skiing, you should...Ch. 16 - Since Earth is exposed to solar radiation, why...Ch. 16 - Global warming at Earths surface is generally...Ch. 16 - In its 2014 report, the Intergovernmental Panel on...Ch. 16 - A Canadian meteorologist predicts an overnight low...Ch. 16 - Normal room temperature is 68F. Whats this in...Ch. 16 - Prob. 18ECh. 16 - At what temperature do the Fahrenheit and Celsius...Ch. 16 - The normal boiling point of nitrogen is 77.3 K....Ch. 16 - Prob. 21ECh. 16 - Prob. 22ECh. 16 - Prob. 23ECh. 16 - Whats the specific heat of a material if it takes...Ch. 16 - The average human diet contains about 2000 kcal...Ch. 16 - Prob. 26ECh. 16 - You bring a 350-g wrench into the house from your...Ch. 16 - Prob. 28ECh. 16 - Building heat loss in the United States is usually...Ch. 16 - Find the heat-loss rate through a slab of (a) wood...Ch. 16 - The top of a steel wood stove measures 90 cm by 40...Ch. 16 - Youre a builder whos advising a homeowner to have...Ch. 16 - An 8.0 m by 12 m house is built on a concrete slab...Ch. 16 - Find the -factor for a wall that loses 0.040 Btu...Ch. 16 - Compute the -factors for 1-inch thicknesses of...Ch. 16 - A horseshoe has surface area 50 cm2, and a...Ch. 16 - An oven loses energy at the rate of 14 W per C...Ch. 16 - Youre having your homes heating system replaced,...Ch. 16 - The filament of a 100-W lightbulb is at 3.0 kK....Ch. 16 - A typical human body has surface area 1.4 nr and...Ch. 16 - A constant-volume gas thermometer is filled with...Ch. 16 - A constant-volume gas thermometer is at 55-kPa...Ch. 16 - In Fig. 16.2s gas thermometer, the height h is...Ch. 16 - Prob. 44PCh. 16 - Typical fats contain about 9 kcal per gram. If the...Ch. 16 - A circular lake 1.0 km in diameter is 10 m deep...Ch. 16 - How much heat is required to raise an 800-g copper...Ch. 16 - Initially, 100 g of water and 100 g of another...Ch. 16 - Prob. 49PCh. 16 - Two neighbors return from Florida to find their...Ch. 16 - Prob. 51PCh. 16 - Prob. 52PCh. 16 - Prob. 53PCh. 16 - The temperature of the eardrum provides a reliable...Ch. 16 - Prob. 55PCh. 16 - Your young niece complains that her cocoa, at 90C,...Ch. 16 - A piece of copper at 300C is dropped into 1.0 kg...Ch. 16 - While camping, you boil water to make spaghetti....Ch. 16 - A biology labs walk-in cooler measures 3.0 m by...Ch. 16 - One end of an iron rod 40 cm long and 3.0 cm in...Ch. 16 - Prob. 61PCh. 16 - An electric stove burner has surface area 325 cm2...Ch. 16 - An electric current passes through a metal strip...Ch. 16 - Youre considering purchasing a new sleeping bag...Ch. 16 - A blacksmith heats a 1.1-kg iron horseshoe to...Ch. 16 - Whats the power output of a microwave oven that...Ch. 16 - A cylindrical log 15 cm in diameter and 65 cm long...Ch. 16 - A blue giant star whose surface temperature is 23...Ch. 16 - Prob. 69PCh. 16 - A black wood stove with surface area 4.6 nr is...Ch. 16 - Estimate the average temperature on Pluto,...Ch. 16 - Prob. 72PCh. 16 - Prob. 73PCh. 16 - Prob. 74PCh. 16 - Prob. 75PCh. 16 - In a cylindrical pipe where area isnt constant....Ch. 16 - Prob. 77PCh. 16 - Prob. 78PCh. 16 - Prob. 79PCh. 16 - Use the method outlined in Problem 76 to show that...Ch. 16 - A house is at 20C on a winter night when the...Ch. 16 - A more realistic approach to the solar greenhouse...Ch. 16 - Fiberglass is a popular, economical, and fairly...Ch. 16 - Fiberglass is a popular, economical, and fairly...Ch. 16 - Fiberglass is a popular, economical, and fairly...Ch. 16 - Fiberglass is a popular, economical, and fairly...
Additional Science Textbook Solutions
Find more solutions based on key concepts
1. Why is the quantum-mechanical model of the atom important for understanding chemistry?
Chemistry: Structure and Properties (2nd Edition)
14.19 In Genetic Analysis, we designed a screen to identify conditional mutants of S. cerevisiae in which the s...
Genetic Analysis: An Integrated Approach (3rd Edition)
8. A human maintaining a vegan diet (containing no animal products) would be a:
a. producer
b. primary consume...
Human Biology: Concepts and Current Issues (8th Edition)
Johnny was vigorously exercising the only joints in the skull that are freely movable. What would you guess he ...
Anatomy & Physiology (6th Edition)
Answer Problems 3 through 5 by choosing one of the eight labeled acceleration vectors or selecting option I: = ...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
WHAT IF? Is allopatric speciation more likely to occur on an island close to a mainland or on a more isolated i...
Campbell Biology in Focus (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) What is the rate of heat conduction through the 3.00-cm-thick fur of a large animal having a I .40-m surface area? Assume that the animal's skin temperature is 32.0 , that the air temperature is 5.00 , and that has the same thermal conductivity as air. (b) What food intake will the animal need in one day to replace this heat transfer?arrow_forwardTwo concrete spans that form a bridge of length L are placed end to end so that no room is allowed for expansion (Fig. P16.63a). If a temperature increase of T occurs, what is the height y to which the spans rise when they buckle (Fig. P16.63b)?arrow_forward(a) Calculate the rate of heat conduction through a double-paned window that has a 150-m2 area and is made of two panes of 0.800 cm-thick glass separated by a 1.00 cm air gap. The inside surface temperature is 15.0 C, while that on the outside is 10.0 OC. (Hint: There are identical temperature drops across the two glass panes. First find these and then the temperature drop across the air gap. This problem ignores the increased heat transfer in the air gap due to convection.) (b) Calculate the rate of heat conduction through a 1.60-cm-thick window of the same area and with the same temperatures. Compare your answer with that for part (a).arrow_forward
- For the human body, what is the rate of heat transfer by conduction through the body's tissue with the following conditions: the tissue thickness is 3.00 cm, the difference in temperature is 2.00 , and the skin area is 1.50 m2. How does this compare with the average heat transfer rate to the body resulting from an energy intake of about 2400 kcal per day? (No exercise is included.)arrow_forwardOne easy way to reduce heating (and cooling) costs is to add extra insulation in the attic of a house. Suppose a single-story cubical house already had 15 cm of fiberglass insulation in the attic and in all the exterior surfaces. If you added an extra 8.0 cm of fiberglass to the attic, by what percentage would the heating cost of the house drop? Take the house to have dimensions 10 m by 15 m by 3.0 m. Ignore air infiltration and heat loss through windows and doors, and assume that the interior is uniformly at one temperature and the exterior is uniformly at another.arrow_forwardAt high noon, the Sun delivers 1 000 W to each square meter of a blacktop road. If the hot asphalt transfers energy only by radiation, what is its steady-state temperature?arrow_forward
- A picture window has dimensions of 1.34 m by 2.65 m and is made of glass 5.93 mm thick. On a winter day, the outside temperature is -20°C, while the inside temperature is a comfortable 19.5°C. At what rate is heat being lost through the window by conduction? kglass = 0.80 W/m.K Round your answer to 2 decimal places.arrow_forwardCalculate the rate of steady heat transfer from a 8 m-by-10 m roof of a building during a cold winter day. The roof temperature can be assumed to be constant at 12°C. The air temperature outside the building is -5°C. The sky temperature is -17°C. The solar irradiation at the location is 500 W/m². The convection coefficient can be assumed to be 8 W/m².°c. The emissivity of the roof is 0.75, and solar absorptivity is 0.4. Neglect any conduction via the walls to the ground. 2173 Warrow_forwardHumans are able to control their heat production rate and heat loss rate to maintain a nearly constant core temperature of Tcore=37°C under a wide range of environmental conditions. This process is called thermoregulation. From the perspective of calculating heat transfer between a human body and its surroundings, we focus on a layer of skin and fat, with its outer surface exposed to the environment and its inner surface at a temperature slightly less than the core temperature, Ti = 35° C. Temperature of surrounding air is 10°C. Consider a person with a skin/fat layer of thickness L= 3 mm and effective thermal conductivity k = 0.3 W/m.K and person has a surface area A= 1.8 m?. The person is dressed in a bathing suit with an extremely low thermal conductivity of 0.014 W/m K. The emissivity of the outer surface of wet suits is 0.95. What thickness of aerogel insulation is needed to reduce the heat loss rate to 100 W (a typical metabolic heat generation rate) in air and what is the…arrow_forward
- The air temperature above coastal areas is profoundly influenced by the large specific heat of water. One reason is that the energy released when 1 cubic meter of water cools by 1.0°C will raise the temperature of an enormously larger volume of air by 1.0°C. Estimate that volume of air. The specific heat of air is approximately 1.0 kJ/kg ? °C. Take the density of air to be 1.3 kg/m3.arrow_forwardThe inner and outer surfaces of a 25-cm-thick wall in summer are at 27°C and 44°C, respectively. The outer surface of the wall exchanges heat by radiation with surrounding surfaces at 40°C, and convection with ambient air also at 40°C with a convection heat transfer coefficient of 8 W/m2·K. Solar radiation is incident on the surface at a rate of 150 W/m2. If both the emissivity and the solar absorptivity of the outer surface are 0.8, determine the effective thermal conductivity of the wall.arrow_forwardA thermal window, with an area of 6.0m ^ 2, is constructed of two layers of glass, each 4.0mm thick, separated from each other by a 5.0mm air gap. If the inner surface is at 20.0 ° C and the outer surface is at -5.0 ° C, what is the rate of energy transfer by conduction through the window? The thermal conductivity of glass is 0.8 W⁄ (m. ° C) and that of air is 0.023 W⁄ (m. ° C)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Heat Transfer: Crash Course Engineering #14; Author: CrashCourse;https://www.youtube.com/watch?v=YK7G6l_K6sA;License: Standard YouTube License, CC-BY