College Physics: A Strategic Approach (4th Edition)
4th Edition
ISBN: 9780134609034
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 16, Problem 33P
The first formant of your vocal system can be modeled as the resonance of an open-closed tube, the closed end being your vocal cords and the open end your lips. Estimate the frequency of the first formant from the graph of Figure 16.23, and then estimate the length of the tube of which this is a resonance. Does your result seem reasonable?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A violin string ? = 31.6 cm long and ? = 0.65 g⁄m linear mass density is tuned to play a La4 note at 440.0 Hz. This means that the string is at its fundamental oscillation mode, that is, you will be on that note without placing a finger on it. From this information:
A. Calculate the tension in the string that keeps it in tune.
A violin string ? = 31.6 cm long and ? = 0.65 g⁄m linear mass density is tuned to play a La4 note at 440.0 Hz. This means that the string is at its fundamental oscillation mode, that is, you will be on that note without placing a finger on it. From this information:
B. If the midpoint of the chord is displaced 1.80 mm transversely when found in the fundamental mode, what is the maximum speed ??á? of the midpoint of string?
Parasaurolophus was a dinosaur whose distinguishing feature was a hollow crest on the head. The 1.5-m-long hollow tube in the crest had connectionsto the nose and throat, leading some investigators to hypothesize that the tube was a resonant chamber for vocalization. If you model the tube as an open-closed system, what are the first three resonant frequencies? Assume a speed of sound of 350 m/s.
Chapter 16 Solutions
College Physics: A Strategic Approach (4th Edition)
Ch. 16 - Light can pass easily through water and through...Ch. 16 - Prob. 2CQCh. 16 - Prob. 3CQCh. 16 - A guitarist finds that the pitch of one of her...Ch. 16 - Certain illnesses inflame your vocal cords,...Ch. 16 - Prob. 6CQCh. 16 - Figure Q16.7 shows a standing sound wave in a tube...Ch. 16 - A typical flute is about 66 cm long. A piccolo is...Ch. 16 - Some pipes on a pipe organ are open at both ends,...Ch. 16 - If you pour liquid in a tall, narrow glass, you...
Ch. 16 - When you speak after breathing helium, in which...Ch. 16 - Prob. 14CQCh. 16 - A synthesizer is a keyboard instrument that can be...Ch. 16 - A small boy and a grown woman both speak at...Ch. 16 - Prob. 18MCQCh. 16 - At x = 3 cm, what is the earliest time that y will...Ch. 16 - Prob. 20MCQCh. 16 - Prob. 21MCQCh. 16 - A student in her physics lab measures the...Ch. 16 - Prob. 23MCQCh. 16 - Resonances of the ear canal lead to increased...Ch. 16 - The frequency of the lowest standing-wave mode on...Ch. 16 - Suppose you pluck a string on a guitar and it...Ch. 16 - Figure P16.11 is a snapshot graph at t = 0 s of...Ch. 16 - Prob. 2PCh. 16 - Prob. 3PCh. 16 - Prob. 4PCh. 16 - Prob. 5PCh. 16 - Prob. 6PCh. 16 - At t = 0 s, a small upward (positive y) pulse...Ch. 16 - You are holding one end of an elastic cord that is...Ch. 16 - A 2.0-m-long string is fixed at both ends and...Ch. 16 - Figure P16.10 shows a standing wave oscillating at...Ch. 16 - A bass guitar string is 89 cm long with a...Ch. 16 - Prob. 12PCh. 16 - a. What are the three longest wavelengths for...Ch. 16 - Prob. 14PCh. 16 - Prob. 15PCh. 16 - Prob. 16PCh. 16 - The lowest note on a grand piano has a frequency...Ch. 16 - An experimenter finds that standing waves on a...Ch. 16 - Ocean waves of wavelength 26 m are moving directly...Ch. 16 - Prob. 20PCh. 16 - Prob. 21PCh. 16 - Prob. 22PCh. 16 - Prob. 23PCh. 16 - An organ pipe is made to play a low note at 27.5...Ch. 16 - The speed of sound in room temperature (20C) air...Ch. 16 - Parasaurolophus was a dinosaur whose...Ch. 16 - A drainage pipe running under a freeway is 30.0 m...Ch. 16 - Prob. 28PCh. 16 - Although the vocal tract is quite complicated, we...Ch. 16 - You know that you sound better when you sing in...Ch. 16 - A child has an ear canal that is 1.3 cm long. At...Ch. 16 - When a sound wave travels directly toward a hard...Ch. 16 - The first formant of your vocal system can be...Ch. 16 - When you voice the vowel sound in hat, you narrow...Ch. 16 - The first and second formants when you make an ee...Ch. 16 - Two loudspeakers emit sound waves along the...Ch. 16 - Two loudspeakers in a 20C room emit 686 Hz sound...Ch. 16 - In noisy factory environments, its possible to use...Ch. 16 - Two identical loudspeakers separated by distance d...Ch. 16 - Prob. 42PCh. 16 - Two identical loudspeakers 2.0 m apart are...Ch. 16 - Prob. 44PCh. 16 - Musicians can use beats to tune their instruments....Ch. 16 - A student waiting at a stoplight notices that her...Ch. 16 - Two strings are adjusted to vibrate at exactly 200...Ch. 16 - A flute player hears four beats per second when...Ch. 16 - Prob. 50GPCh. 16 - In addition to producing images, ultrasound can be...Ch. 16 - An 80-cm-long steel string with a linear density...Ch. 16 - Tendons are, essentially, elastic cords stretched...Ch. 16 - Spiders may tune strands of their webs to give...Ch. 16 - Prob. 56GPCh. 16 - Prob. 57GPCh. 16 - Prob. 58GPCh. 16 - Prob. 60GPCh. 16 - A 40-cm-long tube has a 40-cm-long insert that can...Ch. 16 - The width of a particular microwave oven is...Ch. 16 - Two loudspeakers located along the x-axis as shown...Ch. 16 - Two loudspeakers 42.0 m apart and facing each...Ch. 16 - Prob. 65GPCh. 16 - Two loudspeakers, 4.0 m apart and facing each...Ch. 16 - Piano tuners tune pianos by listening to the beats...Ch. 16 - A flutist assembles her flute in a room where the...Ch. 16 - Prob. 69GPCh. 16 - A Doppler blood flowmeter emits ultrasound at a...Ch. 16 - An ultrasound unit is being used to measure a...Ch. 16 - Prob. 72MSPPCh. 16 - Prob. 73MSPPCh. 16 - Prob. 74MSPPCh. 16 - Prob. 75MSPP
Additional Science Textbook Solutions
Find more solutions based on key concepts
Match the following examples of mutagens. Column A Column B ___a. A mutagen that is incorporated into DNA in pl...
Microbiology: An Introduction
Organisms with the genotypes AABbCcDd and AaBbCcDd are crossed. What are the expected propor-tions of the follo...
Genetic Analysis: An Integrated Approach (3rd Edition)
All of the following processes are involved in the carbon cycle except: a. photosynthesis b. cell respiration c...
Human Biology: Concepts and Current Issues (8th Edition)
Although many chimpanzees live in environments with oil palm nuts, members of only a few populations use stones...
Campbell Biology (11th Edition)
Plants use the process of photosynthesis to convert the energy in sunlight to chemical energy in the form of su...
Campbell Essential Biology with Physiology (5th Edition)
10.71 Identify each of the following as an acid or a base: (10.1)
H2SO4
RbOH
Ca(OH)2
HI
...
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A dinosaur called Parasaurolophus is a dinosaur (looks like a dinosaur with a single horn) thathas a hollow horn crest on its head. The 1.5 m long hollow tub inside of this crest hadconnections to the throat, leading some paleontologists to guess that the tube was used as aresonant chamber in vocalization. If you model this system as an open-closed system, what arethe first three resonant frequencies at 85 degrees F?arrow_forwardA guitar string has a pluckable length of 42 cm. What is the length of the 5th harmonic?arrow_forwardA violin string ? = 31.6 cm long and ? = 0.65 g⁄m linear mass density is tuned to play a La4 note at 440.0 Hz. This means that the string is at its fundamental oscillation mode, that is, you will be on that note without placing a finger on it. From this information: C. If we compare the current La4 note of 440.0 Hz with the La4 note of 422.5 Hz from Handel's time, By what percentage should the tension of the violin string vary with respect to the current to tune the note to 422.5 Hz?arrow_forward
- The pan flute is a musical instrument consisting of a number of closed-end tubes of different lengths. When the musician blows over the open ends, each tube plays a different note. The longest pipe is 0.33 m long. What is the frequency of the note it plays?arrow_forwardPlease answer it within 30 minutes. I will upvote! Problem: When you blow over the edge of a pan flute pipe, a certain tone is produced. Assume that the tube is cylindrical, open at the top and closed at the bottom. Construct a mathematical model to derive the length required to produce a vocal frequency for la at 440 Hz if the note follows an axisymmetric wave. The speed of sound at room temperature is 340 m/s.arrow_forwardPlease show all the steps and the equation required in each case. arrow_forward
- Problem 1 In pipe A, the ratio of a particular harmonic frequency to the next lower harmonic frequency is 1.2. In pipe B, the ratio of a particular harmonic frequency to the next lower harmonic frequency is 1.4. How many open ends are in pipe A and pipe В?arrow_forwardA flute is a 66.0 cm pipe that is open at both ends. What are the first three harmonics when all keys are closed if the speed of sound is 340 m/s?arrow_forwardOne OPEN organ pipe has a length of 2.40 m. What is the frequency of a note played by this pipe? What is the frequency of the second and third harmonic?arrow_forward
- A violin string of length L=31.8 cm and linear mass density u=0.64gm/is tuned to play an A4 note at 440.0 Hz. This means that the string is in its mode of oscillation fundamental, that is, it will be on that note without placing any fingers on it. From this information, D. When playing the violin, different notes can be produced depending on the position of the fingers of one hand on the string. The usual technique presses the string hard against the fretboard, reducing the length of the string that can vibrate. If we consider this string initially tuned for an A4, and a finger is placed a third of the way down from the headstock: What would be the new fundamental frequency, that is, the frequency of the new note that is being produced assuming it has the same tension as in part A? ii. i. What would be the new frequency of the note, if instead of using the technique described above for violin playing, the technique called artificial harmonic is used, where the string is only partially…arrow_forwardTwo strings, A and B, have respective mass densities A and py respectively. The linear mass density, Hp. of string-B is nine times that of string-A (H = 9). If both strings have the same fundamental frequency when kept at the same tension, then the ratio of their lengths L/LA is equal to: O 1/3 1/9 O 3 9.arrow_forwardThe diameter D of a tube does affect the node at the open end of a tube. The end correction can be roughly approxi- mated as adding D/3 to l to give us an effective length for the tube in calculations. For a closed tube of length 0.55 m and diameter 3.0 cm, what are the frequencies of the first four harmonics, taking the end correction into consideration?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
What Are Sound Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=GW6_U553sK8;License: Standard YouTube License, CC-BY