An Introduction to Physical Science
14th Edition
ISBN: 9781305079137
Author: James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 16, Problem 2MC
Which of Kepler’s laws gives the most direct indication of the shape of the orbit of a planet? (16.1)
- (a) law of elliptical orbits
- (b) law of equal areas
- (c) harmonic law
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Two exoplanets, UCF1.01 and UCF1.02 are found revolving around the same star. The period of planet UCF1.01 is 92.4 days, and that of planet UCF1.02 is 7.1 days.
If the average distance of UCF1.01 to the sun is 5,828.0 km, what is the average distance of UCF1.02 to the sun in km? Please keep four digits after decimal points.
You are planning a dream vacation to Mars. For the orbital dynamics part of the vacation planning assume that Earth is in a circular orbit 1.00 AU from the Sun and Mars is in a circular orbit 1.52 AU from the Sun. Assume the the orbits of Earth and Mars are coplanar and that they go around the Sun the same way. The orbit you plan to use for your trip is an ellipse with the Sun at one focus (Kepler's 1st Law). The perihelion of the ellipse is at Earth's orbit at 1.00 AU and the aphelion is at Mars' orbit at 1.52 AU. Your spacecraft will go around the Sun in the same sense as Earth and Mars. The orbit you have chosen is called a Hohmann Transfer Orbit.
A. What is the semi-major axis a of the spacecraft's orbit? What is the eccentricity of the spacecraft's orbit?
B. What is the orbital period of the spacecraft? How long does it take to get to Mars? How long does it take to get back?
C. When (at what Earth - Mars configuration) do you launch to go? In other words, where does Mars need to…
Sam is an astronomer on planet Hua, which orbits the distant star Barnard. It has recently been accepted that Hua is spherical in shape, although its exact size is
unknown. While studying in the library, in the city of Joy, Sam learns that during equinox, Barnard is directly overhead in the city of Bar, located 1500.0 km north
of his location. On the equinox, Sam goes outside and measures the altitude of Barnard at 83 degrees. What is the radius of Hua in km?
Chapter 16 Solutions
An Introduction to Physical Science
Ch. 16.1 - What is the difference between the geocentric...Ch. 16.1 - Prob. 2PQCh. 16.1 - Calculate the period of a planet whose orbit has a...Ch. 16.2 - Prob. 1PQCh. 16.2 - Prob. 2PQCh. 16.3 - Which has the greater albedo, the Earth or the...Ch. 16.3 - Prob. 2PQCh. 16.4 - What makes a planet terrestrial, or pertaining to...Ch. 16.4 - What is the most abundant molecule in the...Ch. 16.5 - Prob. 1PQ
Ch. 16.5 - Prob. 2PQCh. 16.6 - Prob. 1PQCh. 16.6 - Prob. 2PQCh. 16.7 - Prob. 1PQCh. 16.7 - Prob. 2PQCh. 16.8 - Prob. 1PQCh. 16.8 - Prob. 2PQCh. 16 - Prob. AMCh. 16 - Prob. BMCh. 16 - Prob. CMCh. 16 - Prob. DMCh. 16 - Prob. EMCh. 16 - Prob. FMCh. 16 - Prob. GMCh. 16 - Prob. HMCh. 16 - Prob. IMCh. 16 - Prob. JMCh. 16 - Prob. KMCh. 16 - Prob. LMCh. 16 - Prob. MMCh. 16 - Prob. NMCh. 16 - Prob. OMCh. 16 - Prob. PMCh. 16 - Prob. QMCh. 16 - Prob. RMCh. 16 - Prob. SMCh. 16 - Prob. TMCh. 16 - Prob. UMCh. 16 - Prob. VMCh. 16 - Prob. WMCh. 16 - Prob. XMCh. 16 - Prob. 1MCCh. 16 - Which of Keplers laws gives the most direct...Ch. 16 - Which of Keplers laws gives an indication of the...Ch. 16 - Prob. 4MCCh. 16 - Which of the following is abundant on the Earth...Ch. 16 - Prob. 6MCCh. 16 - Prob. 7MCCh. 16 - Which of the following statements concerning the...Ch. 16 - Which of the following is not a physical...Ch. 16 - What are the primary constituents of the Jovian...Ch. 16 - Which of the following is not a physical...Ch. 16 - Which planet has a ring system made of mostly...Ch. 16 - Which Jovian planet revolves on its side and has...Ch. 16 - Which one of the following criteria disqualifies...Ch. 16 - Which statement about the dwarf planet Ceres is...Ch. 16 - Prob. 16MCCh. 16 - Prob. 17MCCh. 16 - Which of the following is not a very useful method...Ch. 16 - ___ is the study of the universe. (Intro)Ch. 16 - Prob. 2FIBCh. 16 - Prob. 3FIBCh. 16 - Prob. 4FIBCh. 16 - Prob. 5FIBCh. 16 - Prob. 6FIBCh. 16 - Prob. 7FIBCh. 16 - The albedo of the Earth is about ___. (16.3)Ch. 16 - Prob. 9FIBCh. 16 - Prob. 10FIBCh. 16 - Prob. 11FIBCh. 16 - Prob. 12FIBCh. 16 - The Jovian planet with retrograde rotation is ___....Ch. 16 - Prob. 14FIBCh. 16 - Prob. 15FIBCh. 16 - Prob. 16FIBCh. 16 - Prob. 17FIBCh. 16 - Prob. 1SACh. 16 - What is the main difference between the...Ch. 16 - Prob. 3SACh. 16 - Prob. 4SACh. 16 - Describe the orientation and the shape of the...Ch. 16 - Prob. 6SACh. 16 - Prob. 7SACh. 16 - Prob. 8SACh. 16 - Prob. 9SACh. 16 - Prob. 10SACh. 16 - Prob. 11SACh. 16 - Prob. 12SACh. 16 - Explain the differences between the Grand Canyon...Ch. 16 - Prob. 14SACh. 16 - Prob. 15SACh. 16 - Which planets axis of rotation is a peculiarity,...Ch. 16 - Prob. 17SACh. 16 - Prob. 18SACh. 16 - Why is Pluto not considered a major planet, and...Ch. 16 - Prob. 20SACh. 16 - Prob. 21SACh. 16 - What was the major influence in the formation of...Ch. 16 - What is astrometry?Ch. 16 - Prob. 24SACh. 16 - Prob. 1VCCh. 16 - Give some reasons our knowledge of the solar...Ch. 16 - A Foucault pendulum suspended from the ceiling of...Ch. 16 - Prob. 3AYKCh. 16 - Explain how the scientific method was used to...Ch. 16 - How does the solar nebula theory explain the...Ch. 16 - Calculate the period T of a planet whose orbit has...Ch. 16 - Calculate the period T of a dwarf planet whose...Ch. 16 - Calculate the length R of the semimajor axis of a...Ch. 16 - Calculate the length R of the semimajor axis of a...Ch. 16 - Determine what the period of revolution of the...Ch. 16 - Determine what the period of revolution of the...Ch. 16 - Asteroids are believed to be material that never...Ch. 16 - Show that the asteroid belt lies between Mars and...Ch. 16 - Use Keplers third law to show that the closer a...Ch. 16 - Prob. 10ECh. 16 - Prob. 11ECh. 16 - List the Jovian planets in order of increasing...
Additional Science Textbook Solutions
Find more solutions based on key concepts
7. (II) (a) What is the current in the element of an electric clothes dryer with a resistance of 8.6 ?when it i...
Physics: Principles with Applications
Can the observer shown see a star when it is located below the horizon? Why or why not?
Lecture- Tutorials for Introductory Astronomy
42. * Insulating a house You insulate your house using insulation rated as R-12, which will conduct 1/12 Btu/h ...
College Physics
The magnitude of force of gravity.
Physics (5th Edition)
5.106 A 70-kg person rides in a 30-kg cart moving at 12 m/s at the top of a hill that is in the shape of an arc...
University Physics (14th Edition)
The formula for the sum Sn of the geometric series Sn=a+ar+.....arn−1 .
Mathematical Methods in the Physical Sciences
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A planet of mass m= 8.45 x 1024 kg is orbiting in a circular path a star of mass M= 6.95 x 1029 kg. The radius of the orbit is R= 3.15 x 107km. What is the orbital pperiod (in Earth days) of the planet Pplanet? Express your answer to three significant figures. Pplanet = ? daysarrow_forwardThe mass of Mars is 6.42 × 10^23 kg. Its moon Phobos is 9.378 x 10^6 meters away from Mars, with a mass of 1.06 × 10^16 kg and a period of 7.66 hours. It's moon Deimos has a mass of 1.4762x10^15 kg and a period of 30.3 hours. a) Use Kepler's 3rd law to determine the orbital distance between Mars and Deimos? b) What is the tangential velocity of Phobos, using the formula v (tangential) = sqrt (G x m(central)/ r)? c) What is the gravitational force of attraction between Mars and Phobos.arrow_forwardAs an aspiring science fiction author, you are writing about a space-faring race and their home planet, Krypton, which has one moon. This moon takes 1,702,948 seconds to complete an orbit around Krypton. If the distance from the center of the moon to the surface of Krypton is 462.5 x 106 m and the planet has a radius of 37.2 x 106 m, calculate the moon's centripetal acceleration. Your Answer: Answerarrow_forward
- Two exoplanets, UCF1.01 and UCF1.02 are found revolving around the same star. The period of planet UCF1.01 is 4.8 days, and that of planet UCF1.02 is 5.2 days. If the average distance of planet A to the sun is 2,885.4 km, what is the average distance of planet B to the sun km? Please keep four digits after decimal points.arrow_forwardMars has two moons orbiting it. One moon is named Deimos ( terror/dread from Greek mythology). Deimos has a mass of 2(10)^15 kg and is 23,460 km from Mars. The mass of Mars is 6.42 (10) ^23 kg a) What is the gravitational force between Mars and Deimos? (give this answer in Scientific Notation with 2 decimal places) b) What is the velocity of Deimos as it orbits Mars? ( give this answer in decimal form to 2 decimal places) a) = FG __________________ N b) V = ________________ m/sarrow_forwardNeptune orbits the Sun with an orbital radius of 4.495 x 10^12 m. If the earth to sun distance 1A.U. = 1.5 x 10^11 m, a) Determine how many A.U.'s is Neptune's orbital radius (Round to the nearest tenth). b) Given the Sun's mass is 1.99 x10^30 kg, use Newton's modified version of Kepler's formula T^2 = (4pi^2/Gm(star)) x d^3 to find the period in seconds using scientific notation. (Round to the nearest thousandth). C) Convert the period in part b) to years (Round to the nearest tenth)arrow_forward
- Mathematically, prove the accuracy of Kepler’s 3rd law by computing and recording the values in the data table below.arrow_forwardWhich of Keplers laws gives an indication of the semimajor axis? (16.1) (a) law of elliptical orbits (b) law of equal areas (c) harmonic lawarrow_forwardHere, (G = 6.67×10−11N m2/kg2) is the universal gravitational constant, (M) is the mass of the object,and (r) is its radius. For example, the mass of the Earth is (M = 6×1024kg) and the radius is (r = 6.4×106m). Thus, the surface gravity of Earth is:g=(6.67×10−11×6×1024(6.4×106)2)m/s2= 9.8 m/s2ObjectMassRadiusMercury3.3×1023kg2.4×106mVenus4.9×1024kg6.1×106mMars6.4×1023kg3.4×106mJupiter1.9×1027kg7.0×107mSaturn5.7×1026kg5.8×107mUranus8.7×1025kg2.5×107mNeptune1.0×1025kg2.5×107m ProcedureFor each of the planets listed above, compute the surface gravity in m/s21arrow_forward
- (a) Jupiter's third-largest natural satellite, Io, follows an orbit with a semimajor axis of 422,000 km (4.22 ✕ 105 km) and a period of 1.77 Earth days (PIo = 1.77 d). To use Kepler's Third Law, we first must convert Io's orbital semimajor axis to astronomical units. One AU equals 150 million km (1 AU = 1.50 ✕ 108 km). Convert Io's a value to AU and record the result. aIo = AU (b) One Earth year is about 365 days. Convert Io's orbital period to Earth years and record the result. PIo = yr (c) Use the Kepler's Third Law Calculator to calculate Jupiter's mass in solar units. Record the result. MJup(Io) = MSun (d) Based on this result, Jupiter's mass is about that of the Sun. Jupiter has a similar fraction of the Sun's volume. The two objects therefore have rather similar density! In fact, Jupiter has a fairly similar composition as well: most of its mass is in the form of hydrogen and helium.arrow_forwardFind the ratio of the mass of Jupiter to that of the Earth based on data in this table.arrow_forwardThe solar system has a planet with an orbital period T1b=1.51d and an orbital radius of R1b=1.6456x10^6km. Another planet in the system has an orbital radius of R1f=5.5352x10^6 km. Calculate its orbital period in days.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY