An Introduction to Physical Science
14th Edition
ISBN: 9781305079137
Author: James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 16, Problem 7SA
To determine
Is it possible for mars to be in inferior conjunction with the earth. Explain the reason for the same.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Do tides depend more on the strength of gravitational pull or on the difference in strengths?Explain.
8. The mean distance of Earth from the Sun is 149.6 x 10° km and the mean distance of
Mercury from the Sun is 57.9 x 10° km. The period of Earth's revolutions is 1 year,
what is the period of Mercury's revolution?
a. 0.24 year on Earth
b. 0.42 year on Earth
C. 1.13 year on Earth
d. 1.31 year on Earth
9. The planet Delta has 2 times the gravitational field strength and 3 times the radius of
Earth. How does the mass of the planet Delta compare with the mass of Earth?
Mars has an orbital radius of 1.523 AU and an orbital period of 687.0 days. What is its average speed v in SI units? (1 AU is the astronomical unit, the mean distance between the Sun and the Earth, which is 1.496×1011 m)
a. 0.00221 AU/day
b. 3838 m/s
c. 0
d. 1.28×10−9 m/s
Chapter 16 Solutions
An Introduction to Physical Science
Ch. 16.1 - What is the difference between the geocentric...Ch. 16.1 - Prob. 2PQCh. 16.1 - Calculate the period of a planet whose orbit has a...Ch. 16.2 - Prob. 1PQCh. 16.2 - Prob. 2PQCh. 16.3 - Which has the greater albedo, the Earth or the...Ch. 16.3 - Prob. 2PQCh. 16.4 - What makes a planet terrestrial, or pertaining to...Ch. 16.4 - What is the most abundant molecule in the...Ch. 16.5 - Prob. 1PQ
Ch. 16.5 - Prob. 2PQCh. 16.6 - Prob. 1PQCh. 16.6 - Prob. 2PQCh. 16.7 - Prob. 1PQCh. 16.7 - Prob. 2PQCh. 16.8 - Prob. 1PQCh. 16.8 - Prob. 2PQCh. 16 - Prob. AMCh. 16 - Prob. BMCh. 16 - Prob. CMCh. 16 - Prob. DMCh. 16 - Prob. EMCh. 16 - Prob. FMCh. 16 - Prob. GMCh. 16 - Prob. HMCh. 16 - Prob. IMCh. 16 - Prob. JMCh. 16 - Prob. KMCh. 16 - Prob. LMCh. 16 - Prob. MMCh. 16 - Prob. NMCh. 16 - Prob. OMCh. 16 - Prob. PMCh. 16 - Prob. QMCh. 16 - Prob. RMCh. 16 - Prob. SMCh. 16 - Prob. TMCh. 16 - Prob. UMCh. 16 - Prob. VMCh. 16 - Prob. WMCh. 16 - Prob. XMCh. 16 - Prob. 1MCCh. 16 - Which of Keplers laws gives the most direct...Ch. 16 - Which of Keplers laws gives an indication of the...Ch. 16 - Prob. 4MCCh. 16 - Which of the following is abundant on the Earth...Ch. 16 - Prob. 6MCCh. 16 - Prob. 7MCCh. 16 - Which of the following statements concerning the...Ch. 16 - Which of the following is not a physical...Ch. 16 - What are the primary constituents of the Jovian...Ch. 16 - Which of the following is not a physical...Ch. 16 - Which planet has a ring system made of mostly...Ch. 16 - Which Jovian planet revolves on its side and has...Ch. 16 - Which one of the following criteria disqualifies...Ch. 16 - Which statement about the dwarf planet Ceres is...Ch. 16 - Prob. 16MCCh. 16 - Prob. 17MCCh. 16 - Which of the following is not a very useful method...Ch. 16 - ___ is the study of the universe. (Intro)Ch. 16 - Prob. 2FIBCh. 16 - Prob. 3FIBCh. 16 - Prob. 4FIBCh. 16 - Prob. 5FIBCh. 16 - Prob. 6FIBCh. 16 - Prob. 7FIBCh. 16 - The albedo of the Earth is about ___. (16.3)Ch. 16 - Prob. 9FIBCh. 16 - Prob. 10FIBCh. 16 - Prob. 11FIBCh. 16 - Prob. 12FIBCh. 16 - The Jovian planet with retrograde rotation is ___....Ch. 16 - Prob. 14FIBCh. 16 - Prob. 15FIBCh. 16 - Prob. 16FIBCh. 16 - Prob. 17FIBCh. 16 - Prob. 1SACh. 16 - What is the main difference between the...Ch. 16 - Prob. 3SACh. 16 - Prob. 4SACh. 16 - Describe the orientation and the shape of the...Ch. 16 - Prob. 6SACh. 16 - Prob. 7SACh. 16 - Prob. 8SACh. 16 - Prob. 9SACh. 16 - Prob. 10SACh. 16 - Prob. 11SACh. 16 - Prob. 12SACh. 16 - Explain the differences between the Grand Canyon...Ch. 16 - Prob. 14SACh. 16 - Prob. 15SACh. 16 - Which planets axis of rotation is a peculiarity,...Ch. 16 - Prob. 17SACh. 16 - Prob. 18SACh. 16 - Why is Pluto not considered a major planet, and...Ch. 16 - Prob. 20SACh. 16 - Prob. 21SACh. 16 - What was the major influence in the formation of...Ch. 16 - What is astrometry?Ch. 16 - Prob. 24SACh. 16 - Prob. 1VCCh. 16 - Give some reasons our knowledge of the solar...Ch. 16 - A Foucault pendulum suspended from the ceiling of...Ch. 16 - Prob. 3AYKCh. 16 - Explain how the scientific method was used to...Ch. 16 - How does the solar nebula theory explain the...Ch. 16 - Calculate the period T of a planet whose orbit has...Ch. 16 - Calculate the period T of a dwarf planet whose...Ch. 16 - Calculate the length R of the semimajor axis of a...Ch. 16 - Calculate the length R of the semimajor axis of a...Ch. 16 - Determine what the period of revolution of the...Ch. 16 - Determine what the period of revolution of the...Ch. 16 - Asteroids are believed to be material that never...Ch. 16 - Show that the asteroid belt lies between Mars and...Ch. 16 - Use Keplers third law to show that the closer a...Ch. 16 - Prob. 10ECh. 16 - Prob. 11ECh. 16 - List the Jovian planets in order of increasing...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Explain why there are two high tides and two low tides each day. Strictly speaking, should the period during which there are two high tides be 24 hours? If not, what should the interval be?arrow_forwardIn a part of Earth’s orbit where Earth is moving faster than usual around the Sun, would the length of the solar day change? If so, how? Explain.arrow_forward(a) One of the moons of Jupiter, named Io, has an orbital radius of 4.22 108 m and a period of 1.77 days. Assuming the orbit is circular, calculate the mass of Jupiter, (b) The largest moon of Jupiter, named Ganymede, has an orbital radius of 1.07 109 m and a period of 7.16 days. Calculate the mass of Jupiter from this data, (c) Are your results to parts (a) and (b) consistent? Explain.arrow_forward
- Congratulations! You just derived a version of Kepler's Third Law for Mars! Using the mass of Mars in kilograms and converting the 4.5 hours to seconds, calculate the distance from the center of the planet. GM kg 4π² ]s)² 3 = And then determine the distance (in km) from the surface. r = rm + rs rs km = kmarrow_forwardThe time separating high tides is 12 hours and 25 minutes. Assume that the high tide occurs at 2:18 p.m. one afternoon. (a) At what time will high tide occur the next afternoon? 1x xp.m. (b) When would you expect low tides to occur the next day? X X a.m. and X X p.m.arrow_forwardIs a pound of butter on the earth the same amount as a pound of butter on Mars? What about a kilogram of butter? Explain.arrow_forward
- hi. can you solve it with an explanation? thanksarrow_forwardDirection: Complete the table below. Calculate the problem using the Laws of Planetary Motion based on the given basic planetary data below. F Earth Mars Saturn Uranus Neptune Jupiter 1. 3. Mean Distance(r) Period of 1.496 x 108 44.97x108 2.28 x 108 14.27x108 2. 4. Revolution (T) 365.2 days 1.88 yrs. 11.86 yrs. 84 yrs. Using the Earth as reference, determine the mean distance(r) or the Period of revolution (T) of each planet. Here is the formula in the Law of Period. (T₁)² (r₁)² (T₂)² (r₂)² = 1. Find the Mean distance of Jupiter. 2. Find the Period of Saturn 3. Find the mean distance of Uranus. 4. Find the Period of Neptune.arrow_forwardYou may attempt this question 3 more times for credit. In this problem, we will directly calculate the surface gravity and your weight on another planet. In metric, your weight is measured in "Newtons", and 1 Newton = 1 kg m / s². Newton's constant G = 6.67 x 10-11 m³/(kg s²). Earth has a mass = 5.97 x 1024 kg and a radius of 6378 km. You should be able to verify that g = 9.8 m/s² on Earth using the formula for surface gravity. If your mass is 64 kg, you should also be able to verify you should weigh 626 Newtons. If you can do that you should be OK for what's next. The mass of Venus is 4.87E+24 kg, and it's radius is 6.05E+3 km. What is the surface gravity of this planet? (Watch your units!). m/s² If your mass is 64 kg, what would you weigh on Venus? Newtons. Note: Remember if your answer requires scientific notation to use the "e" notation: "1.1 x 105" is "1.1e5" to OWL.arrow_forward
- 25. The mean distance of Earth from the Sun is 149.6 x 10° km and the mean distance of Mercury from the Sun is 57.9 x 106 km. The period of Earth's revolutions is 1 year, what is the period of Mercury's revolution? a. 0.24 year on Earth b. 0.42 year on Earth C. 1.13 year on Earth d. 1.31 year on Eartharrow_forward2. An unknown planet was accidentally discovered by NASA. It has a mean distance of 2.15 E11 meters from the sun. Assuming it has a mass of 6.02 E24 kg, how long (in Earth Years) will it take for the said planet to revolve around the sun?arrow_forwardDetermine what the period of revolution of the Earth would be if its distance from the Sun were 3.5 AU rather than 1 AU. Assume that the mass of the Sun remains the same. The final unit should be y in the answer.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY