Fundamentals Of Thermal-fluid Sciences In Si Units
5th Edition
ISBN: 9789814720953
Author: Yunus Cengel, Robert Turner, John Cimbala
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Question
Chapter 16, Problem 29P
To determine
The rate of heat loss and the rate at which the ice melts in the container.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Assignment 10, Question 1, Problem Book #189
Problem Statement
An ideal Brayton cycle operates with no reheat, intercooling, or regeneration. The com-
pressor inlet conditions are 30°C and 1 bar. The compression ratio is 11. The turbine inlet
temperature is 1,300 K. Determine the turbine exit temperature, the thermal efficiency, and
the back work ratio. Use an air standard analysis.
Answer Table
Correct
Stage
Description
Your Answer
Answer
*
1
Compressor inlet enthalpy (kJ/kg)
Due Date
Grade
(%)
Weight Attempt Action/Message
Part
Type
1
2
1 Compressor inlet relative pressure
1 Compressor exit relative pressure
1 Compressor exit enthalpy (kJ/kg)
Compressor work (kJ/kg)
Turbine inlet enthalpy (kJ/kg)
Dec 5, 2024 11:59 pm
Dec 5, 2024 11:59 pm
Dec 5, 2024 11:59 pm 0.0
0.0
1
1/5
Submit Stage 1
0.0
1
1
Dec 5, 2024 11:59 pm
0.0
1
Dec 5, 2024 11:59 pm
0.0
1
2
Turbine inlet relative pressure
Dec 5, 2024 11:59 pm
Dec 5, 2024 11:59 pm
0.0
1
1/5
0.0
1
2
Combustion chamber heat addition (kJ/kg)
Dec…
Assignment 10, Question 4, Problem Book #202
Problem Statement
An ideal Brayton cycle with a two-stage compressor, a two-stage turbine, and a regenerator
operates with a mass flow rate of 25 kg/s. The regenerator cold inlet is at 490 K and its
effectiveness is 60%. Ambient conditions are 90 kPa and 20°C. The intercooler operates at
450 kPa and the reheater operates at 550 kPa. The temperature at the exit of the combustion
chamber is 1,400 K. Heat is removed in the intercooler at a rate of 2.5 MW and heat is added
in the reheater at a rate of 10 MW. Determine the thermal efficiency and the back work
ratio. Use a cold air standard analysis with cp = 1.005 kJ/(kg K) and k = 1.4.
.
Answer Table
Stage
Description
Your Answer
Correct
Answer
Due Date
Grade
(%)
1
Thermal efficiency (%)
Dec 5, 2024 11:59 pm
0.0
1
Weight Attempt Action/Message
1/5
Part
Type
Submit
1
Back work ratio (%)
Dec 5, 2024 11:59 pm
0.0
1
* Correct answers will only show after due date has passed.
Assignment 10, Question 3, Problem Book #198
Problem Statement
Consider a Brayton cycle with a regenerator. The regenerator has an effectiveness of 75%.
The compressor inlet conditions are 1.2 bar and 300 K and the mass flowrate is 4.5 kg/s. The
compressor outlet pressure is 9 bar. Both the compressor and turbine consist of a single
isentropic stage. What minimum power output must be achieved before the regenerator
begins to have a benefit? Use an air-standard analysis.
Answer Table
Correct Answer
Stage
Description
Your Answer
Due Date
Grade
(%)
Part
Weight Attempt Action/Message
Туре
1
Power output (MW)
Dec 5, 2024 11:59 pm
0.0
1
1/5
Submit
* Correct answers will only show after due date has passed.
Chapter 16 Solutions
Fundamentals Of Thermal-fluid Sciences In Si Units
Ch. 16 - Prob. 1PCh. 16 - Judging from its unit W/m·K, can we define thermal...Ch. 16 - Which is a better heat conductor, diamond or...Ch. 16 - How do the thermal conductivity of gases and...Ch. 16 - Why is the thermal conductivity of superinsulation...Ch. 16 - Why do we characterize the heat conduction ability...Ch. 16 - Consider an alloy of two metals whose thermal...Ch. 16 - What are the mechanisms of heat transfer? How are...Ch. 16 - Write down the expressions for the physical laws...Ch. 16 - How does heat conduction differ from convection?
Ch. 16 - Does any of the energy of the sun reach the earth...Ch. 16 - How does forced convection differ from natural...Ch. 16 - What is the physical mechanism of heat conduction...Ch. 16 - Consider heat transfer through a windowless wall...Ch. 16 - Consider heat loss through the two walls of a...Ch. 16 - Consider two houses that are identical, except...Ch. 16 - Consider two walls of a house that are identical...Ch. 16 - Define emissivity and absorptivity. What is...Ch. 16 - What is a blackbody? How do real bodies differ...Ch. 16 - A wood slab with a thickness of 0.05 m is...Ch. 16 - The inner and outer surfaces of a 4-m × 7-m brick...Ch. 16 - The inner and outer surfaces of a 0.5-cm thick 2-m...Ch. 16 - An aluminum pan whose thermal conductivity is 237...Ch. 16 - The north wall of an electrically heated home is...Ch. 16 - In a certain experiment, cylindrical samples of...Ch. 16 - One way of measuring the thermal conductivity of a...Ch. 16 - A concrete wall with a surface area of 20 m2 and a...Ch. 16 - A hollow spherical iron container with outer...Ch. 16 - The inner and outer glasses of a 4-ft × 4-ft...Ch. 16 - An engineer who is working on the heat transfer...Ch. 16 - Air at 20°C with a convection heat transfer...Ch. 16 - Four power transistors, each dissipating 12 W, are...Ch. 16 - In a power plant, pipes transporting superheated...Ch. 16 - An electric current of 5 A passing through a...Ch. 16 - Hot air at 80°C is blown over a 2-m × 4-m flat...Ch. 16 - A 5-cm-external-diameter, 10-m-long hot-water pipe...Ch. 16 - A transistor with a height of 0.4 cm and a...Ch. 16 - A 300-ft-long section of a steam pipe whose outer...Ch. 16 - The boiling temperature of nitrogen at atmospheric...Ch. 16 - Repeat Prob. 16–43 for liquid oxygen, which has a...Ch. 16 - A series of experiments were conducted by passing...Ch. 16 - A 2.1-m-long, 0.2-cm-diameter electrical wire...Ch. 16 - Using the conversion factors between W and Btu/h,...Ch. 16 - The outer surface of a spacecraft in space has an...Ch. 16 - Consider a person whose exposed surface area is...Ch. 16 - Consider a sealed 20-cm-high electronic box whose...Ch. 16 - Two surfaces, one highly polished and the other...Ch. 16 - A spherical interplanetary probe, with a diameter...Ch. 16 - An electronic package in the shape of a sphere...Ch. 16 - Can all three modes of heat transfer occur...Ch. 16 - Can a medium involve (a) conduction and...Ch. 16 - The deep human body temperature of a healthy...Ch. 16 - We often turn the fan on in summer to help us...Ch. 16 - Consider a 20 cm thick granite wall with a thermal...Ch. 16 - A solid plate, with a thickness of 15 cm and a...Ch. 16 - Air at 20°C with a convection heat transfer...Ch. 16 - An electronic package with a surface area of 1 m2...Ch. 16 - Consider steady heat transfer between two large...Ch. 16 - Consider a person standing in a room at 18°C....Ch. 16 - The inner and outer surfaces of a 25-cm-thick wall...Ch. 16 - A 2-in-diameter spherical ball whose surface is...Ch. 16 - An 800-W iron is left on the iron board with its...Ch. 16 - A 3-m-internal-diameter spherical tank made of...Ch. 16 - Solar radiation is incident on a 5 m2 solar...Ch. 16 - A flat-plate solar collector is used to heat water...Ch. 16 - The roof of a house consists of a 22-cm-thick...Ch. 16 - Consider a flat-plate solar collector placed...Ch. 16 - An AISI 304 stainless steel sheet is going through...Ch. 16 - Engine valves (cp = 440 J/kg·K and = 7840 kg/m3)...Ch. 16 - A cylindrical resistor element on a circuit board...Ch. 16 - The heat generated in the circuitry on the surface...Ch. 16 - A 0.3-cm-thick, 12-cm-high, and 18-cm-long circuit...Ch. 16 - A 40-cm-long, 800-W electric resistance heating...Ch. 16 - It is well known that wind makes the cold air feel...Ch. 16 - An engine block with a surface area measured to be...Ch. 16 - Consider an electrical wire submerged in liquid...Ch. 16 - A cylindrical fuel rod of 2 cm in diameter is...Ch. 16 - Consider a person standing in a room maintained at...Ch. 16 - Consider a 3-m × 3-m × 3-m cubical furnace whose...Ch. 16 - A soldering iron has a cylindrical tip of 2.5 mm...Ch. 16 - A thin metal plate is insulated on the back and...Ch. 16 - Consider a flat-plate solar collector placed on...Ch. 16 - An electric heater with the total surface area of...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Q-3 Consider an engine operating on the ideal Diesel cycle with air as the working fluid. The volume of the cylinder is 1200 cm³ at the beginning of the Compression process, 75 cm³ at the end, and 150 cm³ after the heat addition process. Air is at 17°c and lookpa at the beginning of the compression proc ess. Determine @ The pressure at the beginning of the heat rejection process. the net work per cycle in kjⒸthe mean effective pressur. Answers @264.3 KN/m² ②0.784 kj or 544-6 kj © 697 KN 19 2 marrow_forwardIn the system shown in the (img 1), water flows through the pump at a rate of 50L/s. The permissible NPSH providedby the manufacturer with that flow is 3.6 m. Determine the maximum height Delta z above the water surface at which the Pump can be installed to operate without cavitation. Include all losses in the suction tube. What is the value of the smaller total losses? What is the value of minor-minor losses? What is the value of major-minor losses?arrow_forwardA plastic canister whose bottom surface can be approximated as a flat surface1.9 m and 3 m long, travels through the water at 19 °C with a speed of up to 48 km/h. Determine: Drag due to friction that water exerts on the boat The power needed to overcome itarrow_forward
- (Fig. 1) shows the performance of a centrifugal pump for various diameters of theimpeller. For such a pump with a 5" diameter impeller, what power, in hp, would be expected to supply 5 L/s?what is its efficiency, in %?A pumping system requires 6 L/s of water with a load of 8 m, which of the pumpsof (fig. 1) would you recommend for this application?;arrow_forwardYou have the following information about a ship (image 1) Determine:a) Calculation of the block coefficient. b) Calculation of the wake coefficient. c) Determine the length of the wake.arrow_forwardA stainless steel canoe moves horizontally along the surface of a lake at 3.7 mi/h. TheThe lake's water temperature is 60°F. The bottom of the canoe is 25 ft long and flat. The boundary layer inThe bottom of the canoe is laminar or turbulent. the value of kinematic viscosity is? the value of the Reynolds number is?arrow_forward
- Example Example 1 A vertical tubular test section is to be installed in an experimental high pressure water loop. The tube is 10.16 mm i.d. and 3.66 m long heated uniformly over its EXAMPLE 73 length. An estimate of the pressure drop across the test section is required as a function of the flow-rate of water entering the test section at 204°C and 68.9 bar. (1) Calculate the pressure drop over the test section for a water flow of 0.108 kg/s with a power of 100 kW applied to the tube using (i) the homogeneous model (ii) the Martinelli-Nelson model (iii) The Thom correlation (iv) the Baroczy correlation (2) Estimate the pressure drop versus flow-rate relationship over the range 0.108 to 0.811 kg/s (2-15 USGPM) for a power of 100 kW and 200 kW applied to the tube using (i) the Martinelli-Nelson model (ii) the Baroczy correlationarrow_forward"A seismograph detects vibrations caused by seismic movements. To model this system, it is assumed that the structure undergoes a vibration with a known amplitude band frequency w (rad/s), such that its vertical displacement is given by xB=bsin(wt). This movement of the structure will produce a relative acceleration in the mass m of 2 kg, whose displacement 2 will be plotted on a roller." x= 15 kN/m Structure -WI 24 mm (Ctrl) sin(wt) b(w/w)² √√1 (w/w)] + [25(w/w)]²' "The seismograph's roller measures 60 mm, and a maximum vibration amplitude of the structure of b<5 mm is expected. Design the damper (constant c) to ensure that, for a constant oscillation, the seismograph functions correctly and the needle does not move off the roller."arrow_forwardAircraft B is traveling at a steady speed of VB = 400 mi/hr at an altitude of 6000 ft. Meanwhile, when aircraft A is at an altitude of 10,000 ft, the line connecting A to B lies in the vertical plane of B's flight path and forms an angle of 0 = 30 degrees with the vertical. Assuming A maintains a constant velocity, find the speed required for a collision to occur. Additionally, calculate the time it would take for the collision to happen after both aircraft reach the described positions, provided no evasive measures are taken. Problem outline: 1- Find the velocity of A for the collision to happen. 2- Find the time at which the collision happens. 3- Explain the solution process with your own words. - 10,000 ft 12° 6000 ft B UBarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license