(a)
Interpretation:
The entropy change (
Concept introduction:
Entropy is defined as the ratio of thermal energy to the temperature which is unavailable for work done. It is also defined as the measure of disorder of molecule of a system. It is an extensive property and state function.
Entropy is related with the number of microstates for a system and microstate is defined as the number of ways for the system to be arranged.
The standard entropy change at room temperature is equal to the difference between the standard entropy of reactant and standard entropy of product.
Answer to Problem 22QAP
Explanation of Solution
Given process is:
The mathematical expression for the standard entropy value at room temperature is:
Where, n and p represents the coefficients of reactants and products in the balanced chemical equation.
The value of standard entropy for
The value of standard entropy for
The value of standard entropy for
The value of standard entropy for
The value of standard entropy for
Put the values, we get:
(b)
Interpretation:
The entropy change (
Concept introduction:
Entropy is defined as the ratio of thermal energy to the temperature which is unavailable for work done. It is also defined as the measure of disorder of molecule of a system. It is an extensive property and state function.
Entropy is related with the number of microstates for a system and microstate is defined as the number of ways for the system to be arranged.
The standard entropy change at room temperature is equal to the difference between the standard entropy of reactant and standard entropy of product.
Answer to Problem 22QAP
Explanation of Solution
Given process is:
The mathematical expression for the standard entropy value at room temperature is:
Where, n and p represents the coefficients of reactants and products in the balanced chemical equation.
The value of standard entropy for
The value of standard entropy for
The value of standard entropy for
The value of standard entropy for
The value of standard entropy for
Put the values, we get:
(c)
Interpretation:
The entropy change (
Concept introduction:
Entropy is defined as the ratio of thermal energy to the temperature which is unavailable for work done. It is also defined as the measure of disorder of molecule of a system. It is an extensive property and state function.
Entropy is related with the number of microstates for a system and microstate is defined as the number of ways for the system to be arranged.
The standard entropy change at room temperature is equal to the difference between the standard entropy of reactant and standard entropy of product.
Answer to Problem 22QAP
Explanation of Solution
Given process is:
The mathematical expression for the standard entropy value at room temperature is:
Where, n and p represents the coefficients of reactants and products in the balanced chemical equation.
The value of standard entropy for
The value of standard entropy for
The value of standard entropy for
The value of standard entropy for
The value of standard entropy for
The value of standard entropy for
Put the values, we get:
Want to see more full solutions like this?
Chapter 16 Solutions
PRINCIPLES+REACTIONS
- Discuss the effect of temperature change on the spontaneity of the following reactions at 1 atm: (a) Al2O3(s)+2Fe(s)2Al(s)+Fe2O3(s) H =851.4kJ;S =38.5J/K (b) N2H4(l)N2+2H2(g) H =50.6kJ;S =0.3315kJ/K (c) SO3(g)SO2(g)+12 O2(g) H =98.9kJ;S =0.0939kJ/Karrow_forwardActually, the carbon in CO2(g) is thermodynamically unstable with respect to the carbon in calcium carbonate(limestone). Verify this by determining the standardGibbs free energy change for the reaction of lime,CaO(s), with CO2(g) to make CaCO3(s).arrow_forwardUse the data in Appendix J to calculate rG andKPat 25 C for the reaction 2HBr(g)+Cl2(g)2HCl(g)+Br2() Comment on the connection between the sign of rG and the magnitude ofKP.arrow_forward
- Calculate G at 355 K for each of the reactions in Question 17. State whether the reactions are spontaneous.arrow_forwarda Calculate K1, at 25C for sulfurous acid: H2SO3(aq)H+(aq)+HSO3(aq) b Which thermodynamic factor is the most significant in accounting for the fact that sulfurous acid is a weak acid? Why?arrow_forwardThe molecular scale pictures below show snapshots of a strong acid at three different instants after it is added to water. Place the three pictures in the correct order so that they show the progress of the spontaneous process that takes place as the acid dissolves in the water. Explain your answer in terms of entropyarrow_forward
- Calculate the standard Gibbs free-energy change when SO3 forms from SO2 and O2 at 298 K. Why is sulfur trioxide an important substance to study? (Hint: What happens when it combines with water?)arrow_forwardWhich contains greater entropy, a quantity of frozen benzene or the same quantity of liquid benzene at the same temperature? Explain in terms of the dispersal of energy in the substance.arrow_forwardSilver carbonate, Ag2CO3, is a light yellow compound that decomposes when heated to give silver oxide and carbon dioxide: Ag2CO3(s)Ag2O(s)+CO2(g) A researcher measured the partial pressure of carbon dioxide over a sample of silver carbonate at 220C and found that it was 1.37 atm. Calculate the partial pressure of carbon dioxide at 25C. The standard enthalpies of formation of silver carbonate and silver oxide at 25C are 505.9 kJ/mol and 31.05 kJ/mol, respectively. Make any reasonable assumptions in your calculations. State the assumptions that you make, and note why you think they are reasonable.arrow_forward
- Adenosine triphosphate, ATP, is used as a free-energy source by biological cells. (See the essay on page 624.) ATP hydrolyzes in the presence of enzymes to give ADP: ATP(aq)+H2O(l)ADP(aq)+H2PO4(aq);G=30.5kJ/molat25C Consider a hypothetical biochemical reaction of molecule A to give molecule B: A(aq)B(aq);G=+15.0kJ/molat25C Calculate the ratio [B]/[A] at 25C at equilibrium. Now consider this reaction coupled to the reaction for the hydrolysis of ATP: A(aq)+ATP(aq)+H2O(l)B(aq)+ADP(aq)+H2PO4(aq) If a cell maintains a high ratio of ATP to ADP and H2PO4 by continuously making ATP, the conversion of A to B can be made highly spontaneous. A characteristic value of this ratio is [ATP][ADP][H2PO4]=500 Calculate the ratio [B][A] in this case and compare it with the uncoupled reaction. Compared with the uncoupled reaction, how much larger is this ratio when coupled to the hydrolysis of ATP?arrow_forwardFor each of the following processes, identify the systemand the surroundings. Identify those processes that arespontaneous. For each spontaneous process, identify theconstraint that has been removed to enable the process to occur: Ammonium nitrate dissolves in water. Hydrogen and oxygen explode in a closed bomb. A rubber band is rapidly extended by a hangingweight. The gas in a chamber is slowly compressed by aweighted piston. A glass shatters on the floor.arrow_forwardWhat is the sign of the standard Gibbs free-energy change at low temperatures and at high temperatures for the explosive decomposition of TNT? Use your knowledge of TNT and the chemical equation, particularly the phases, to answer this question. (Thermodynamic data for TNT are not in Appendix G.) 2C7H5N3O6(s) 3N2(g) + 5H2O() + 7C(s) + 7CO(g)arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning