
Concept explainers
(a)
To write: A balanced equation of the reactions catalyzed by each enzyme of citric acid cycle.
Concept introduction: Citric acid cycle is also known as the TCA cycle (Tricarboxylic acid cycle) or Krebs’s cycle. Pyruvate obtained from glycolysis is first converted into acetyl groups, these groups enter into citric acid cycle. In citric acid cycle the sugars, amino acids, and fatty acids are oxidized into CO2 and H2O.
(a)

Explanation of Solution
Explanation:
Enzymes used in TCA are citrate synthase, aconitase, isocitrate dehydrogenase, α- ketoglutarate dehydrogenase, succinyl CoA synthetase, succinate dehydrogenase, fumarase, and malate dehydrogenase.
Before citric acid cycle starts, pyruvates give acetyl-CoA which enters the citric acid cycle. Acetyl CoA reacts with oxaloacetate to produce citrate with the help of citrate synthase as shown in Fig.1.
Aconitase is responsible for conversion of citrate into isocitrate as shown in Fig.2.
Isocitrate dehydrogenase converts isocitrate into α- ketoglutarate as shown in Fig.3.
α- ketoglutarate dehydrogenase complex converts α- ketoglutarate into succinyl- CoA as shown in Fig.4.
Succinyl co A is converted into succinate, the succinyl CoA synthetase catalyses the reaction. Succinate is an intermediate and quickly gets converted into fumarate with the action of succinate dehydrogenase as shown in Fig.5.
In the next step of reaction hydrolysis of fumarate takes place and it gets convert into malate as shown in Fig.6.
Malate dehydrogenase catalyzes malate to get it convert into oxaloacetate as shown in Fig.7.
Pictorial representation: The reactions catalyzed by the enzymes in citric acid cycle is represented in the following figures.
Fig1: Enzyme citrate synthase activity.
Fig2: Enzyme aconitase activity.
Fig3: Enzyme isocitrate dehydrogenase activity.
Fig4: Enzyme α- ketoglutarate dehydrogenase complex activity.
Fig5: Enzyme succinyl CoA synthetase activity.
Fig6: Enzyme fumarase activity.
Fig7: Enzyme malate dehydrogenase activity.
(b)
To name: The cofactors which are required for each enzymatic reactions.
Concept introduction:
Citric acid cycle is also known as the TCA cycle (Tricarboxylic acid cycle) or Krebs’s cycle. Pyruvate obtained from glycolysis is first converted into acetyl groups, these groups enter into citric acid cycle. In citric acid cycle the sugars, amino acids, and fatty acids are oxidized into CO2 and H2O.
(b)

Explanation of Solution
Explanation:
Presence of cofactors in the reactions is mandatory for the functioning of enzymes. Enzymes can catalyze the reaction only in the presence of cofactors.
When isocitrate converts into α- ketoglutarate then isocitrate dehydrogenase enzyme gets involve. The cofactor which is required at this step is NADH.
In the next step when α- ketoglutarate gets convert into succinyl CoA α- ketoglutarate dehydrogenase complex enzyme takes part and NADH is found present to facilitate the enzyme functioning.
GTP is the required cofactor when succinyl CoA synthetase catalyzes the conversion of succinyl CoA into succinate.
Fumarase enzyme uses FADH2 as its cofactor when fumarate is converted into malate.
NADH is present for the functioning of malate dehydrogenase when malate gets convert into oxaloacetate.
(c)
To determine: The types of reactions catalyzed, condensation, dehydration, hydration, decarboxylation, oxidation-reduction, substrate level phosphorylation and isomerization.
Concept introduction:
Citric acid cycle is also known as the TCA cycle (Tricarboxylic acid cycle) or Krebs’s cycle. Pyruvate obtained from glycolysis is first converted into acetyl groups, these groups enter into citric acid cycle. In citric acid cycle the sugars, amino acids, and fatty acids are oxidized into CO2 and H2O.
(c)

Explanation of Solution
Explanation:
Fig1 is showing the formation of citrate from acetyl coA, this process is Claisen condensation process because methyl group found on acetyl coA gets converted into methylene of citrate.
The conversion of citrate to isocitrate is isomerization reaction. Fig2 is showing the processof conversion of citrate into isocitrate with the formation of one intermediate cis- aconitate, in this process first dehydration and then rehydration takes place. Citrate undergoes dehydration and cis aconitate is obtained, then rehydration of cis aconitate takes place which produces isocitrate.
Fig 3 is showing the production of α- ketoglutarate from isocitrate via oxidative decarboxylation, hydroxyl group of isocitrate is oxidized into carbonyl.
Fig 4 is the reaction of conversion of α- ketoglutarate into succinyl coA which is a oxidative decarboxylation process.
Fig 5 is the step of conversion of succinyl coA into succinate via substrate level phosphorylation process.
The succinate is converted into fumarate via oxidation reaction. Fumarate is converted into L-Malate by hydration reaction. Finally by oxidation reaction L-Malate is converted into oxaloacetate.
Fig 7 is the dehydrogenation of malate to get convert into oxaloacetate.
(d)
To write: Net balanced equation of the catabolic reaction of acetyl CoA to CO2.
Concept introduction:
Citric acid cycle is also known as the TCA cycle (Tricarboxylic acid cycle) or Krebs’s cycle. Pyruvate obtained from glycolysis is first converted into acetyl groups, these groups enter into citric acid cycle. In citric acid cycle the sugars, amino acids, and fatty acids are oxidized into CO2 and H2O.
(d)

Explanation of Solution
Explanation:
Acetyl CoA is converted into CO2 along with amount of energy. Net equation of reaction of acetyl CoA to CO2 is:
Want to see more full solutions like this?
Chapter 16 Solutions
EBK LEHNINGER PRINCIPLES OF BIOCHEMISTR
- Calculating the pH of a salt solution Calculate the pH at 25 °C of a 0.29M solution of potassium butanoate (KC3H,CO2). Note that butanoic acid (HC3H,CO2) is a weak acid with a pKa of 4.82. Round your answer to 1 decimal place. pH = -0 Х olo 18 Ararrow_forward: At a certain temperature, the equilibrium constant K for the following reaction is 1.58 × 10-12 N2(g) + O2(g) = 2 NO(g) Use this information to complete the following table. Suppose a 38. L reaction vessel is filled with 0.93 mol of N2 and 0.93 mol of O2. What can you say about the composition of the mixture in the vessel at equilibrium? There will be very little N2 and O2. There will be very little NO. What is the equilibrium constant for the following reaction? Be sure your answer has the correct number of significant digits. 2 NO(g) N2(9)+02(9) What is the equilibrium constant for the following reaction? Be sure your answer has the correct number of significant digits. 3 N2(9)+302(g) 6 NO(g) Neither of the above is true. K = ☐ K = ☐ ☐ X10 Х D ? 000 18 Ar Barrow_forwardwhen performing the reaction that involves 2 equivalents of 3-(diethylamino)-phenol and Phthalic anhydride with sulfuric acid and water react to form rhodamine b where the Phthalic anhydride cleaves in acid and how does Excessive Washing (w/ Base) & Subsequent Resonance Structure get affectedarrow_forward
- 3. The strongest acid of the following compounds is ___.A. p-nitrophenol; B. m-nitrophenol; C. o-chlorophenol;D. p-methoxyphenol; E. o-methylphenol Please explain your steps and thought process. Thank you!arrow_forwardUsing the general properties of equilibrium constants At a certain temperature, the equilibrium constant K for the following reaction is 1.3 × 10 4: Cl2(g) + CHCl3(g) HCl(g) + CC₁(g) Use this information to complete the following table. Suppose a 16. L reaction vessel is filled with 1.6 mol of HCI and 1.6 mol of CCl4. What can you say about the composition of the mixture in the vessel at equilibrium? There will be very little Cl2 and CHCl3. ☐ x10 There will be very little HCI and CCl4. Neither of the above is true. What is the equilibrium constant for the following reaction? Be sure your answer has the correct number of significant digits. HCl(g)+CC14(g) 12 Cl2(9)+CHCl3(9) K = 0 ☐ What is the equilibrium constant for the following reaction? Be sure your answer has the correct number of significant digits. 2 Cl₂(9)+2CHCl3(9) 2 HCl(9)+2CC₁₁(9) K = ✓ 00. 18 Ararrow_forward10. The most important reason why Br- is a better nucleophile than Cl-is ___. A. polarizability; B. size; C. solvation; D. basicity; E. polarity. Please include all steps. Thanks!arrow_forward
- Predicting the qualitative acid-base properties of salts Consider the following data on some weak acids and weak bases: base acid Ка K₁₁ name formula name formula nitrous acid HNO2 4.5×10 4 pyridine CHEN 1.7 × 10 9 4 hydrofluoric acid HF 6.8 × 10 methylamine CH3NH2 | 4.4 × 10¯ Use this data to rank the following solutions in order of increasing pH. In other words, select a '1' next to the solution that will have the lowest pH, a '2' next to the solution that will have the next lowest pH, and so on. solution 0.1 M NaNO2 0.1 M KF pH choose one v choose one v 0.1 M C5H5NHBr 0.1 M CH3NH3CI choose one v ✓ choose one 1 (lowest) 2 ☑ 3 4 (highest) 000 18 Ararrow_forward4. The major product from treatment of 2-propanol with the Jonesreagent is ___.A. acetone; B. none of the other answers is correct C. propene; D.propanoic acid; E carbon dioxide. Please include all steps! Thank you!arrow_forward7. All of the following compounds that are at the same oxidation levelare ___.u. methyl epoxide, v. propyne, w. propanal, x. propene,y. 2,2-dihydroxypropane, z. isopropanol?A. u,v,w,y; B. u,v,w; C. v,w,y,z; D. v, z; E. x,y,z Please include all steps. Thank you!arrow_forward
- 9. Which one of the following substituents is the worst leaving group inan SN2 reaction? A. -NH2; B. -OH; C. –F; D. NH3; E. H2O Please include all steps. Thanks!arrow_forwardUsing the general properties of equilibrium constants At a certain temperature, the equilibrium constant K for the following reaction is 2.5 × 105: CO(g) + H2O(g) CO2(g) + H2(g) Use this information to complete the following table. Suppose a 7.0 L reaction vessel is filled with 1.7 mol of CO and 1.7 mol of H2O. What can you say about the composition of the mixture in the vessel at equilibrium? What is the equilibrium constant for the following reaction? Be sure your answer has the correct number of significant digits. CO2(9)+H2(g) CO(g)+H₂O(g) What is the equilibrium constant for the following reaction? Be sure your answer has the correct number of significant digits. 3 CO(g)+3H2O(g) = 3 CO2(g)+3H2(g) There will be very little CO and H2O. x10 There will be very little CO2 and H2. 000 Neither of the above is true. K = ☐ K = ☐ 18 Ararrow_forward8. When ethane thiol is treated with hydrogen peroxide the product is___.A. ethane disulfide; B. diethyl sulfide; C. ethane sulfoxide; D. ethanesulfate; E. ethyl mercaptan. Please include all steps. Thanks!arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





