
(a)
To explain: The reason why oxygen consumption is a good measure of
Introduction:
Amount of oxygen consumed is the measurement of activity of two stages of cellular respiration. These stages are: Citric acid cycle or TCA cycle which is an aerobic process, and glycolysis which is an anaerobic process. Oxaloacetate (OAA) and malate are the important part of citric acid cycle. In the given scenario sample of pigeon breast muscles were used to determine the oxygen consumption.
(a)

Explanation of Solution
Explanation:
The amount of oxygen consumed serves as a good measurement of cellular respiration because the reactions taking place in the pigeon breast muscles use the good amount of oxygen to perform the cellular actions. The consumption of oxygen by the cells depends on the rate of the activity of the cells.
If the oxygen is being consumed on a constant rate then the metabolic conditions of the cells are normal but abnormality in the metabolic conditions of the cells causes irregular consumption of oxygen.
(b)
To explain: The reason of some oxygen consumed by supplemented muscle tissues (sample 1).
Introduction:
The plants are capable in deriving the source from the direct sunlight, but other organisms such as human being or birds are not capable in obtaining energy from the sunlight. To generate energy the cells of such organisms perform the oxidation of glucose through various cycles.
(b)

Explanation of Solution
Explanation:
The sample obtained from the muscle tissues contains some amount of residual glucose. Residual glucose refers to the amount of glucose left over after several processes such as evaporation, filtration or distillation.
The residual glucose can initiate the oxidative phosphorylation by the help of other sugars and glycerol obtained from fats. Therefore the glucose residue is responsible for the oxygen consumption in the cells.
(c)
To determine: After examining the results of sample 2 and 3, whether 1- phosphoglycerol and citrate can be determined as the substrates for cellular respiration.
Introduction:
Oxygen is the prime requirement of the cells to perform the cellular respiration. Cellular respiration is performed by the cells to obtain energy. Respiration in the cells takes place in various steps in the form of cycles: glycolysis, citric acid cycle, and oxidative phosphorylation.
(c)

Explanation of Solution
Explanation:
1-Phosphoglycerol is an intermediate of glycolysis cycle. It is obtained from the reduction of dihydroxy acetone phosphate. Citrate is an intermediate of citric acid cycle. It is the first product of the cycle obtained from the combination of oxaloacetate and acetyl CoA.
Addition of these substances in the cycle can increase the amount of oxygen consumption in the cellular respiration. So, these substances can be considered as the substrates of the cellular respiration.
(d)
To determine: Whether citrate is catalytic for the
Introduction:
Citrate is an intermediate of citric acid cycle and addition of citrate increases the oxygen consumption. In the citric acid cycle when citrate converts into α-ketoglutarate, various types of reactions take place, as dehydration, rehydration, and oxidative decarboxylation. In these
(d)

Explanation of Solution
Explanation:
Experiment 1 depicts that citrate is consuming more oxygen than expected. Citrate follows the characteristic of a catalyst that it takes part in the reaction more than once.
Experiment 2 depicts that with the addition of citrate and 1-phosphoglycerol the consumption of oxygen increases multi folds.
Data in the table shows that excess oxygen consumed by citrate is 89 µL and oxygen consumed by 1-phosphoglycerol is 415 µL, the additional product of both gives 504 µL.
When 0.15 mL of 0.2 M citrate and 0.3 mL of 0.2 M 1-phosphoglycerol are added then oxygen consumption is 1043 µL.
The difference between 1043 µL and 504 µL is 539 µL. This huge difference in the oxygen consumption is because of the citrate activity. The large difference in the amount of oxygen consumed shows the catalytic activity of citrate.
Tabular representation: The Table.1 shows the consumption of excess oxygen.
Table 1: The consumption of excess oxygen.
Sample | Added Substrate | Absorbed amount of O2 in
|
Excess amount of O2 consumed in
|
1 | no addition of extra substrate | 342 | 0 |
2 | 0.3 mL of 0.2 M 1-phosphoglycerol is added. | 757 | 415 |
3 | 0.15 mL of 0.2 M citrate added | 431 | 89 |
4 | 0.15 mL of 0.2 M citrate and 0.3 mL of 0.2 M 1-phosphoglycerol are added. | 1385 | 1043 |
(e)
To discuss: Whether the citrate was regenerated in the whole process so the reactions occurred in cyclic manner rather than linear pathway.
Introduction:
In the citric acid cycle when citrate converts into α-ketoglutarate, various types of reactions take place, as dehydration, rehydration, and oxidative decarboxylation. In these chemical reactions some byproducts are obtained, the by-products contain the atoms or functional group broken from the actual reactant. This results in the loss of some amount of the substrates.
(e)

Explanation of Solution
Explanation:
The data table shows that the pathway consumes citrate. If citrate acts as the catalyst it must be regenerated because catalyst takes part in the pathways at multiple steps.
This pathway first consumes the citrate and then regenerates it. It is clear that the pathway is cyclic rather than linear, because the linear pathway consumes any substrate for once and cannot regenerate it.
(f)
To determine: The product obtained from the conversion of citrate in the given pathway and the reason behind the consumption of oxygen by the sample.
Introduction:
α-ketoglutarate dehydrogenase is inhibited by arsenate and succinate dehydrogenase is inhibited by malonate. α-ketoglutarate dehydrogenase inhibition causes failure in production of succinyl CoA and inhibition in succinate dehydrogenase causes failure of production of fumarate.
(f)

Explanation of Solution
Explanation:
Citrate converts into isocitrate which eventually converts into α-ketoglutarate. The inhibition in the α-ketoglutarate dehydrogenase enzyme activity restricts the cycle at α-ketoglutarate.
Oxygen is consumed by the sample for the reoxidation of NADH. NADH is produced at three steps of citric acid cycle. First, it is produced during the conversion of isocitrate into α-ketoglutarate, then it is produced during conversion of α-ketoglutarate to succinyl CoA, and the third step of NADH production is the conversion of malate into oxaloacetate.
As arsenate inhibits the activity of α-ketoglutarate dehydrogenase the conversion of α-ketoglutarate does not occur. Oxygen is consumed for the reoxidation of NADH at the step of conversion of isocitrate into α-ketoglutarate.
(g)
To determine: The order of intermediates obtained in the citric acid cycle on the basis of data given and to compare it with the citric acid cycle.
Introduction:
Addition of oxaloacetate stimulates the consumption of oxygen many times. Oxaloacetate is the important part of citric acid cycle. Addition of these substances stimulates the citric acid cycle hence consumption of oxygen increases.
(g)

Explanation of Solution
Explanation:
Based on the data given, the correct order of intermediate obtained in the citric acid cycle is depicted in the Fig.1 “The cyclic order of intermediate obtained”.
The cycle of intermediates obtained from the data is different from the original citric acid cycle, as the cycle shown in Fig.1 does not contain acetyl CoA, cis-aconitase, isocitrate, and succinyl CoA.
Pictorial representation: Fig.1 shows the cycle of the intermediates obtained.
Fig.1: The cyclic order of intermediate obtained.
(h)
To explain: The importance of quantitative conversion of citrate to α-ketoglutarate.
Introduction:
In the citric acid cycle when citrate converts into α-ketoglutarate, various types of reactions take place, as dehydration, rehydration, and oxidative decarboxylation. In these chemical reactions some byproducts are obtained, the by-products contain the atoms or functional group broken from the actual reactant. This results in the loss of some amount of the substrates.
(h)

Explanation of Solution
Explanation:
Some citric acid cycle intermediates get involve with the other pathways in the form of catalyst or the reactants, thus it losses some amount of important atoms and molecules.
Quantitative conversion of citrate into α-ketoglutarate is important to ongoing pathway not to get clubbed or complexed with some other pathways.
Want to see more full solutions like this?
Chapter 16 Solutions
EBK LEHNINGER PRINCIPLES OF BIOCHEMISTR
- Calculating the pH of a salt solution Calculate the pH at 25 °C of a 0.29M solution of potassium butanoate (KC3H,CO2). Note that butanoic acid (HC3H,CO2) is a weak acid with a pKa of 4.82. Round your answer to 1 decimal place. pH = -0 Х olo 18 Ararrow_forward: At a certain temperature, the equilibrium constant K for the following reaction is 1.58 × 10-12 N2(g) + O2(g) = 2 NO(g) Use this information to complete the following table. Suppose a 38. L reaction vessel is filled with 0.93 mol of N2 and 0.93 mol of O2. What can you say about the composition of the mixture in the vessel at equilibrium? There will be very little N2 and O2. There will be very little NO. What is the equilibrium constant for the following reaction? Be sure your answer has the correct number of significant digits. 2 NO(g) N2(9)+02(9) What is the equilibrium constant for the following reaction? Be sure your answer has the correct number of significant digits. 3 N2(9)+302(g) 6 NO(g) Neither of the above is true. K = ☐ K = ☐ ☐ X10 Х D ? 000 18 Ar Barrow_forwardwhen performing the reaction that involves 2 equivalents of 3-(diethylamino)-phenol and Phthalic anhydride with sulfuric acid and water react to form rhodamine b where the Phthalic anhydride cleaves in acid and how does Excessive Washing (w/ Base) & Subsequent Resonance Structure get affectedarrow_forward
- 3. The strongest acid of the following compounds is ___.A. p-nitrophenol; B. m-nitrophenol; C. o-chlorophenol;D. p-methoxyphenol; E. o-methylphenol Please explain your steps and thought process. Thank you!arrow_forwardUsing the general properties of equilibrium constants At a certain temperature, the equilibrium constant K for the following reaction is 1.3 × 10 4: Cl2(g) + CHCl3(g) HCl(g) + CC₁(g) Use this information to complete the following table. Suppose a 16. L reaction vessel is filled with 1.6 mol of HCI and 1.6 mol of CCl4. What can you say about the composition of the mixture in the vessel at equilibrium? There will be very little Cl2 and CHCl3. ☐ x10 There will be very little HCI and CCl4. Neither of the above is true. What is the equilibrium constant for the following reaction? Be sure your answer has the correct number of significant digits. HCl(g)+CC14(g) 12 Cl2(9)+CHCl3(9) K = 0 ☐ What is the equilibrium constant for the following reaction? Be sure your answer has the correct number of significant digits. 2 Cl₂(9)+2CHCl3(9) 2 HCl(9)+2CC₁₁(9) K = ✓ 00. 18 Ararrow_forward10. The most important reason why Br- is a better nucleophile than Cl-is ___. A. polarizability; B. size; C. solvation; D. basicity; E. polarity. Please include all steps. Thanks!arrow_forward
- Predicting the qualitative acid-base properties of salts Consider the following data on some weak acids and weak bases: base acid Ка K₁₁ name formula name formula nitrous acid HNO2 4.5×10 4 pyridine CHEN 1.7 × 10 9 4 hydrofluoric acid HF 6.8 × 10 methylamine CH3NH2 | 4.4 × 10¯ Use this data to rank the following solutions in order of increasing pH. In other words, select a '1' next to the solution that will have the lowest pH, a '2' next to the solution that will have the next lowest pH, and so on. solution 0.1 M NaNO2 0.1 M KF pH choose one v choose one v 0.1 M C5H5NHBr 0.1 M CH3NH3CI choose one v ✓ choose one 1 (lowest) 2 ☑ 3 4 (highest) 000 18 Ararrow_forward4. The major product from treatment of 2-propanol with the Jonesreagent is ___.A. acetone; B. none of the other answers is correct C. propene; D.propanoic acid; E carbon dioxide. Please include all steps! Thank you!arrow_forward7. All of the following compounds that are at the same oxidation levelare ___.u. methyl epoxide, v. propyne, w. propanal, x. propene,y. 2,2-dihydroxypropane, z. isopropanol?A. u,v,w,y; B. u,v,w; C. v,w,y,z; D. v, z; E. x,y,z Please include all steps. Thank you!arrow_forward
- 9. Which one of the following substituents is the worst leaving group inan SN2 reaction? A. -NH2; B. -OH; C. –F; D. NH3; E. H2O Please include all steps. Thanks!arrow_forwardUsing the general properties of equilibrium constants At a certain temperature, the equilibrium constant K for the following reaction is 2.5 × 105: CO(g) + H2O(g) CO2(g) + H2(g) Use this information to complete the following table. Suppose a 7.0 L reaction vessel is filled with 1.7 mol of CO and 1.7 mol of H2O. What can you say about the composition of the mixture in the vessel at equilibrium? What is the equilibrium constant for the following reaction? Be sure your answer has the correct number of significant digits. CO2(9)+H2(g) CO(g)+H₂O(g) What is the equilibrium constant for the following reaction? Be sure your answer has the correct number of significant digits. 3 CO(g)+3H2O(g) = 3 CO2(g)+3H2(g) There will be very little CO and H2O. x10 There will be very little CO2 and H2. 000 Neither of the above is true. K = ☐ K = ☐ 18 Ararrow_forward8. When ethane thiol is treated with hydrogen peroxide the product is___.A. ethane disulfide; B. diethyl sulfide; C. ethane sulfoxide; D. ethanesulfate; E. ethyl mercaptan. Please include all steps. Thanks!arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





