
CASE STUDY| I thought it was safe
A middle-aged woman taking the breast cancer drug Tamoxifen for ten years became concerned when she saw a news report with disturbing information. In some women, the drug made their cancer more aggressive and more likely to spread. Other women with breast cancer, the report stated, do not respond to Tamoxifen at all, and 30 to 40 percent of women who take the drug eventually become resistant to chemotherapy. The woman contacted her oncologist to ask some questions:
How can some people react one way to a cancer treatment and others react a different way?

Case summary:
A middle-aged woman was taking Tamoxifen drug as breast cancer treatment for 10 years. One day she came across a disturbing news, which said that different response was seen in different patients as this drug made cancer more aggressive and metastasize in the rest of the body in some patients. While other woman did not respond to the drug and 30–40% of women gradually became resistant to chemotherapy. The woman had some queries to be asked by her oncologist.
Characters in the case:
A middle-aged woman suffering from breast cancer for 10 years.
Adequate information:
The news report points out the different response of the patients to breast cancer treatment, in which some patient’s cancer has aggravated, few others do not show any response to the treatment, and around 40% have become resistant to chemotherapy.
To determine:
The reason for the different responses by different individuals for the drug to cancer treatment.
Explanation of Solution
Given information:
The drug for cancer shows variation in response in different group of individuals.
All the drugs designed for cancer treatment are DNA (deoxyribonucleic acid) damaging. The uncontrolled proliferation of cell is due to mutated DNA, which has to be destructed in order to inhibit tumor growth.
Pharmacogenomics is the field that studies the interaction of medicine with inherited genes. Although the same chemical agent is used as a drug for cancer therapy in all patients, even then different patients react differently to it, the following could be the reasons:
1. The different individual possesses different gene composition: The basic genome structure of all the individuals are same but the great diversity between the individuals of the same species is introduced due to 0.1% difference in genetic makeup. Thus, different cell lines react differently to the same drug.
2. The difference in the rate of metabolism: Different individuals have a different rate of metabolism. Few individuals may break down the drug fast as compared to another individual, making the treatment successful. Another individual may gradually metabolize the drug and the drug may persist for a long time in their body, this would not only cause adverse side effects but also may not give any response to the treatment.
3. The difference in drug activation and deactivation: On receiving a particular drug, certain enzymes are synthesized in the body, which helps in the activation of this drug but the drug activation does not occur in all the individuals. Similarly, drugs also need to undergo deactivation to inhibit the exposure to the healthy cells and limit the side effect of the drug.
4. The difference in DNA repair pathway: Once the DNA-damaging drugs are introduced, the cells will defend itself against the damage of DNA caused by chemotherapeutic drugs. The defense mechanism of cells includes DNA repair and other pathways but due to the difference in genetic makeup, every individual will have a slight variation among the genes involved in these pathways.
Therefore, it can be concluded that the basic composition of the genome is same in each and every individual but the great diversity, which is seen among individuals of same species, occurs due to a slight difference in the genetic makeup. The difference in response to cancer treatment is due to this difference in cell line or genes.
Want to see more full solutions like this?
Chapter 16 Solutions
Essentials of Genetics (9th Edition) - Standalone book
- There is currently a H5N1 cattle outbreak in North America. According to the CDC on Feb 26*: "A multistate outbreak of HPAI A(H5N1) bird flu in dairy cows was first reported on March 25, 2024. This is the first time that these bird flu viruses had been found in cows. In the United States, since 2022, USDA has reported HPAI A(H5N1) virus detections in more than 200 mammals." List and describe two mechanisms that could lead to this H5N1 influenza strain evolving to spread in human: Mechanisms 1: Mechanisms 2: For the mutations to results in a human epidered they would need to change how the virus interacts with the human host. In the case of mutations that may promote an epidemic, provide an example for: a protein that might incur a mutation: how the mutation would change interactions with cells in the respiratory tract (name the receptor on human cells) List two phenotypic consequence from this mutation that would increase human riskarrow_forwardYou have a bacterial strain with the CMU operon: a) As shown in the image below, the cmu operon encodes a peptide (Pep1), as well as a kinase and regulator corresponding to a two-component system. The cmu operon is activated when Pep 1 is added to the growth media. Pep1 is a peptide that when added extracellularly leads to activation of the Cmu operon. Pep1 cmu-kinase cmu-regulator You also have these genetic components in other strains: b) An alternative sigma factor, with a promoter activated by the cmu-regulator, that control a series of multiple operons that together encode a transformasome (cellular machinery for transformation). c) the gene cl (a repressor). d) the promoter X, which includes a cl binding site (and in the absence of cl is active). e) the gene gp (encoding a green fluorescence protein). Using the cmu operon as a starting point, and assuming you can perform cloning to rearrange any of these genomic features, how would you use one or more of these to modify the…arrow_forwardYou have identified a new species of a Gram-positive bacteria. You would like to screen their genome for all proteins that are covalently linked to the cell wall. You have annotated the genome, so that you identified all the promoters, operons, and genes sequences within the operons. Using these features, what would you screen for to identify a set of candidates for proteins covalently linked to the bacterial cell wall.arrow_forward
- Below is a diagram from a genomic locus of a bacterial genome. Each arrow represents a coding region, and the arrowheads indicate its orientation in the genome. The numbers are randomly assigned. Draw the following features on the diagram, and explain your rationale for each feature: 10 12 合會會會會長 6 a) Expected transcriptions, based on known properties of bacterial genes and operons. How many proteins are encoded in each of the transcripts? b) Location of promoters (include rationale) c) Location of transcriptional terminators (include rationale) d) Locations of Shine-Dalgarno sequences (include rationale)arrow_forwardSample excuse letter in school class for the reasons of headaches and dysmenorrhea caused by menstrual cyclearrow_forwardHow do the muscles on the foot work to balance on an ice skate, specifically the triangle of balance and how does it change when balancing on an ice skate? (Refer to anatomy, be specific)arrow_forward
- Which of the following is NOT an example of passive immunization? A. Administration of tetanus toxoid B. Administration of hepatitis B immunoglobulin C. Administration of rabies immunoglobulin D. Transfer of antibodies via plasma therapyarrow_forwardTranscription and Translation 1. What is the main function of transcription and translation? (2 marks) 2. How is transcription different in eukaryotic and prokaryotic cells? (2 marks) 3. Explain the difference between pre-mRNA and post-transcript mRNA. (2 marks) 4. What is the function of the following: (4 marks) i. the cap ii. spliceosome iii. Poly A tail iv. termination sequence 5. What are advantages to the wobble feature of the genetic code? (2 marks) 6. Explain the difference between the: (3 marks) i. A site & P site ii. codon & anticodon iii. gene expression and gene regulation 7. Explain how the stop codon allows for termination. (1 mark) 8. In your own words, summarize the process of translation. (2 marks)arrow_forwardIn this activity you will research performance enhancers that affect the endocrine system or nervous system. You will submit a 1 page paper on one performance enhancer of your choice. Be sure to include: the specific reason for use the alleged results on improving performance how it works how it affect homeostasis and improves performance any side-effects of this substancearrow_forward
- Neurons and Reflexes 1. Describe the function of the: a) dendrite b) axon c) cell body d) myelin sheath e) nodes of Ranvier f) Schwann cells g) motor neuron, interneuron and sensory neuron 2. List some simple reflexes. Explain why babies are born with simple reflexes. What are they and why are they necessary. 3. Explain why you only feel pain after a few seconds when you touch something very hot but you have already pulled your hand away. 4. What part of the brain receives sensory information? What part of the brain directs you to move your hand away? 5. In your own words describe how the axon fires.arrow_forwardMutations Here is your template DNA strand: CTT TTA TAG TAG ATA CCA CAA AGG 1. Write out the complementary mRNA that matches the DNA above. 2. Write the anticodons and the amino acid sequence. 3. Change the nucleotide in position #15 to C. 4. What type of mutation is this? 5. Repeat steps 1 & 2. 6. How has this change affected the amino acid sequence? 7. Now remove nucleotides 13 through 15. 8. Repeat steps 1 & 2. 9. What type of mutation is this? 0. Do all mutations result in a change in the amino acid sequence? 1. Are all mutations considered bad? 2. The above sequence codes for a genetic disorder called cystic fibrosis (CF). 3. When A is changed to G in position #15, the person does not have CF. When T is changed to C in position #14, the person has the disorder. How could this have originated?arrow_forwardhoose a scientist(s) and research their contribution to our derstanding of DNA structure or replication. Write a one page port and include: their research where they studied and the time period in which they worked their experiments and results the contribution to our understanding of DNA cientists Watson & Crickarrow_forward
- Human Biology (MindTap Course List)BiologyISBN:9781305112100Author:Cecie Starr, Beverly McMillanPublisher:Cengage LearningHuman Heredity: Principles and Issues (MindTap Co...BiologyISBN:9781305251052Author:Michael CummingsPublisher:Cengage LearningBiology: The Unity and Diversity of Life (MindTap...BiologyISBN:9781305073951Author:Cecie Starr, Ralph Taggart, Christine Evers, Lisa StarrPublisher:Cengage Learning
- Biology: The Dynamic Science (MindTap Course List)BiologyISBN:9781305389892Author:Peter J. Russell, Paul E. Hertz, Beverly McMillanPublisher:Cengage Learning



