ORGANIC CHEMISTRY SAPLING ACCESS + ETEX
ORGANIC CHEMISTRY SAPLING ACCESS + ETEX
6th Edition
ISBN: 9781319306977
Author: LOUDON
Publisher: INTER MAC
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 16, Problem 16.7P
Interpretation Introduction

(a)

Interpretation:

The structure of the compound is to be drawn with the help of details obtained through the NMR spectra.

Concept introduction:

NMR spectroscopy is a technique used to determine a unique structure of the compounds. It identifies the carbon-hydrogen bonding of an organic compound. A hydrogen atom is called as a proton in the NMR spectroscopy.

The number of NMR signal in a compound is equal to the number of chemically non-equivalent protons present in that compound. The more the shielded proton lesser will be its chemical shift value and the corresponding signal will be produced at the right-hand side or lower frequency region or vice versa.

Interpretation Introduction

(b)

Interpretation:

The structure of the compound is to be given with the help of details obtained through the NMR spectra.

Concept introduction:

Many nuclei and electrons have spin; due to this spin magnetic moment arises. The energy of this magnetic moment depends on the orientation of the applied magnetic field.

In NMR spectroscopy, every nucleus has a spin. There is an angular momentum related to the spin. The difference between its resonance frequency and that of the reference standard is known as the chemical shift of a nucleus. The chemical shift value depended upon its surrounded protons. Tetramethylsilane is taken as reference. Also, the spacing between split lines of NMR spectra is known as coupling constant.

Blurred answer
Students have asked these similar questions
Extra for Experts: Your Future in Chemistry.   As you now know, there are countless jobs that involve chemistry!       Research a chemistry profession that interests you. In your answer, discuss which aspects of the job most appeal to you.
MISSED THIS? Read Section 19.9 (Pages 878-881); Watch IWE 19.10 Consider the following reaction: CH3OH(g) CO(g) + 2H2(g) (Note that AG,CH3OH(g) = -162.3 kJ/mol and AG,co(g)=-137.2 kJ/mol.) Part A Calculate AG for this reaction at 25 °C under the following conditions: PCH₂OH Pco PH2 0.815 atm = 0.140 atm 0.170 atm Express your answer in kilojoules to three significant figures. Ο ΑΣΦ AG = -150 Submit Previous Answers Request Answer □? kJ × Incorrect; Try Again; 2 attempts remaining Calculate the free energy change under nonstandard conditions (AGrxn) by using the following relationship: AGrxn = AGrxn + RTInQ, AGxn+RTInQ, where AGxn is the standard free energy change, R is the ideal gas constant, T is the temperature in kelvins, a is the reaction quotient. Provide Feedback Next >
Identify and provide a brief explanation of Gas Chromatography (GC) within the context of chemical analysis of food. Incorporate the specific application name, provide a concise overview of sample preparation methods, outline instrumental parameters and conditions ultilized, and summarise the outcomes and findings achieved through this analytical approach.

Chapter 16 Solutions

ORGANIC CHEMISTRY SAPLING ACCESS + ETEX

Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Organic Chemistry
    Chemistry
    ISBN:9781305080485
    Author:John E. McMurry
    Publisher:Cengage Learning
    Text book image
    Organic Chemistry
    Chemistry
    ISBN:9781305580350
    Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. Foote
    Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9781305080485
Author:John E. McMurry
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9781305580350
Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. Foote
Publisher:Cengage Learning
IR Spectroscopy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=_TmevMf-Zgs;License: Standard YouTube License, CC-BY