Concept explainers
Determine the percent ionization of the following solutions of phenol: (a) 0.56 M, (b) 0.25 M, (c) l.8 × 10−6 M.
(a)
![Check Mark](/static/check-mark.png)
Interpretation:
The percent ionization of the given solutions of phenol has to be calculated
Concept Information:
Acid ionization constant
Acids ionize in water. Strong acids ionize completely whereas weak acids ionize to some limited extent.
The degree to which a weak acid ionizes depends on the concentration of the acid and the equilibrium constant for the ionization.
The ionization of a weak acid
The equilibrium expression for the above reaction is given below.
Where,
Percent ionization:
A quantitative measure of the degree of ionization is percent ionization.
For a weak, monoprotic acid
To Calculate: The percent ionization of the given solutions of phenol
The percent ionization of given 0.56 M solution of phenol
Answer to Problem 16.54QP
Answer
The percent ionization of the given solution (a) of phenol is 0.0015%
Explanation of Solution
Record the given datas
The concentration of the given solutions of phenol:
0.56 M,
From the given concentrations of phenol solution and
Calculation for finding out hydrogen ions:
From the equilibrium table for given phenol solution, the concentration of hydrogen ion can be found as follows,
Construct an equilibrium table and express the equilibrium concentration of each species in terms of
| |||
Initial
|
|
|
|
Change
|
|
| |
Equilibrium
|
|
|
The
Assuming that x is small compared to 0.56, we neglect it in the denominator:
Therefore, the
Calculation of percent ionization
The percent ionization can be calculated as follows,
Therefore, the percent ionization of given 0.56 M phenol solution is 0.0015%
(b)
![Check Mark](/static/check-mark.png)
Interpretation:
The percent ionization of the given solutions of phenol has to be calculated
Concept Information:
Acid ionization constant
Acids ionize in water. Strong acids ionize completely whereas weak acids ionize to some limited extent.
The degree to which a weak acid ionizes depends on the concentration of the acid and the equilibrium constant for the ionization.
The ionization of a weak acid
The equilibrium expression for the above reaction is given below.
Where,
Percent ionization:
A quantitative measure of the degree of ionization is percent ionization.
For a weak, monoprotic acid
To Calculate: The percent ionization of the given solutions of phenol
The percent ionization of given 0.25 M solution of phenol
Answer to Problem 16.54QP
Answer
The percent ionization of the given solution (b) of phenol is 0.0023%
Explanation of Solution
Record the given datas
The concentration of the given solutions of phenol:
0.25 M,
From the given concentrations of phenol solution and
Calculation for finding out hydrogen ions:
From the equilibrium table for given phenol solution, the concentration of hydrogen ion can be found as follows,
Construct an equilibrium table and express the equilibrium concentration of each species in terms of
| |||
Initial
|
|
|
|
Change
|
|
| |
Equilibrium
|
|
|
The
Assuming that x is small compared to 0.25, we neglect it in the denominator:
Therefore, the
Calculation of percent ionization
The percent ionization can be calculated as follows,
Therefore, the percent ionization of given 0.25 M phenol solution is 0.0023%
(c)
![Check Mark](/static/check-mark.png)
Interpretation:
The percent ionization of the given solutions of phenol has to be calculated
Concept Information:
Acid ionization constant
Acids ionize in water. Strong acids ionize completely whereas weak acids ionize to some limited extent.
The degree to which a weak acid ionizes depends on the concentration of the acid and the equilibrium constant for the ionization.
The ionization of a weak acid
The equilibrium expression for the above reaction is given below.
Where,
Percent ionization:
A quantitative measure of the degree of ionization is percent ionization.
For a weak, monoprotic acid
To Calculate: The percent ionization of the given solutions of phenol
The percent ionization of given
Answer to Problem 16.54QP
Answer
The percent ionization of the given solution (c) of phenol is 0.89%
Explanation of Solution
Record the given datas
The concentration of the given solutions of phenol:
From the given concentrations of phenol solution and
Calculation for finding out hydrogen ions:
From the equilibrium table for given phenol solution, the concentration of hydrogen ion can be found as follows,
Construct an equilibrium table and express the equilibrium concentration of each species in terms of
| |||
Initial
|
|
|
|
Change
|
|
| |
Equilibrium
|
|
|
The
Assuming that x is small compared to
Therefore, the
Calculation of percent ionization
The percent ionization can be calculated as follows,
Therefore, the percent ionization of given 0.56 M phenol solution is 0.89%
Want to see more full solutions like this?
Chapter 16 Solutions
CHEMISTRY: ATOMS FIRST VOL 1 W/CONNECT
- The emission data in cps displayed in Table 1 is reported to two decimal places by the chemist. However, the instrument output is shown in Table 2. Table 2. Iron emission from ICP-AES Sample Blank Standard Emission, cps 579.503252562 9308340.13122 Unknown Sample 343.232365741 Did the chemist make the correct choice in how they choose to display the data up in Table 1? Choose the best explanation from the choices below. No. Since the instrument calculates 12 digits for all values, they should all be kept and not truncated. Doing so would eliminate significant information. No. Since the instrument calculates 5 decimal places for the standard, all of the values should be limited to the same number. The other decimal places are not significant for the blank and unknown sample. Yes. The way Saman made the standards was limited by the 250-mL volumetric flask. This glassware can report values to 2 decimal places, and this establishes our number of significant figures. Yes. Instrumental data…arrow_forwardSteps and explanation pleasearrow_forwardSteps and explanation to undertand concepts.arrow_forward
- Nonearrow_forward7. Draw a curved arrow mechanism for the following reaction. HO cat. HCI OH in dioxane with 4A molecular sievesarrow_forwardTry: Convert the given 3D perspective structure to Newman projection about C2 - C3 bond (C2 carbon in the front). Also, show Newman projection of other possible staggered conformers and circle the most stable conformation. Use the template shown. F H3C Br Harrow_forward
- Nonearrow_forward16. Consider the probability distribution p(x) = ax", 0 ≤ x ≤ 1 for a positive integer n. A. Derive an expression for the constant a, to normalize p(x). B. Compute the average (x) as a function of n. C. Compute σ2 = (x²) - (x)², the variance of x, as a function of n.arrow_forward451. Use the diffusion model from lecture that showed the likelihood of mixing occurring in a lattice model with eight lattice sites: Case Left Right A B C Permeable Barrier → and show that with 2V lattice sites on each side of the permeable barrier and a total of 2V white particles and 2V black particles, that perfect de-mixing (all one color on each side of the barrier) becomes increasingly unlikely as V increases.arrow_forward
- 46. Consider an ideal gas that occupies 2.50 dm³ at a pressure of 3.00 bar. If the gas is compressed isothermally at a constant external pressure so that the final volume is 0.500 dm³, calculate the smallest value Rest can have. Calculate the work involved using this value of Rext.arrow_forwardNonearrow_forward2010. Suppose that a 10 kg mass of iron at 20 C is dropped from a heigh of 100 meters. What is the kinetics energy of the mass just before it hits the ground, assuming no air resistance? What is its speed? What would be the final temperature of the mass if all the kinetic energy at impact is transformed into internal energy? The molar heat capacity of iron is Cpp = 25.1J mol-¹ K-1 and the gravitational acceleration constant is 9.8 m s¯² |arrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337398909/9781337398909_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079243/9781305079243_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285853918/9781285853918_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305580343/9781305580343_smallCoverImage.gif)