The pH and pOH of the given aqueous solution at 25 ∘ C has to be calculated Concept Information: In strong acids, the ionization of acid is complete. This implies that the concentration of the hydrogen ion or hydronium ion will be equal to the initial concentration of the acid at equilibrium. Strong bases: Strong bases are formed from alkali metals and alkaline earth metals of Group IA and IIA respectively. Strong base dissociates into its constituent ions. pOH : The pOH of a solution is defined as the negative base-10 logarithm of the hydroxide ion [OH - ] concentration. pOH scale is analogous to pH scale. pOH = -log[OH - ] Relationship between pH and pOH : pOH is similar to pH . The only difference is that in pOH the concentration of hydroxide ion is used as a scale while in pH , the concentration of hydronium ion is used. The relationship between the hydronium ion concentration and the hydroxide ion concentration is given by the equation, pH + pOH = 14, at 25 o C As pOH and pH are opposite scale, the total of both has to be equal to 14.
The pH and pOH of the given aqueous solution at 25 ∘ C has to be calculated Concept Information: In strong acids, the ionization of acid is complete. This implies that the concentration of the hydrogen ion or hydronium ion will be equal to the initial concentration of the acid at equilibrium. Strong bases: Strong bases are formed from alkali metals and alkaline earth metals of Group IA and IIA respectively. Strong base dissociates into its constituent ions. pOH : The pOH of a solution is defined as the negative base-10 logarithm of the hydroxide ion [OH - ] concentration. pOH scale is analogous to pH scale. pOH = -log[OH - ] Relationship between pH and pOH : pOH is similar to pH . The only difference is that in pOH the concentration of hydroxide ion is used as a scale while in pH , the concentration of hydronium ion is used. The relationship between the hydronium ion concentration and the hydroxide ion concentration is given by the equation, pH + pOH = 14, at 25 o C As pOH and pH are opposite scale, the total of both has to be equal to 14.
The pH and pOH of the given aqueous solution at 25∘C has to be calculated
Concept Information:
In strong acids, the ionization of acid is complete. This implies that the concentration of the hydrogen ion or hydronium ion will be equal to the initial concentration of the acid at equilibrium.
Strong bases: Strong bases are formed from alkali metals and alkaline earth metals of Group IA and IIA respectively.
Strong base dissociates into its constituent ions.
pOH: The pOH of a solution is defined as the negative base-10 logarithm of the hydroxide ion [OH-] concentration. pOH scale is analogous to pH scale.
pOH=-log[OH-]
Relationship between pH and pOH:
pOH is similar to pH. The only difference is that in pOH the concentration of hydroxide ion is used as a scale while in pH, the concentration of hydronium ion is used.
The relationship between the hydronium ion concentration and the hydroxide ion concentration is given by the equation,
pH+pOH=14,at25oC
As pOH and pH are opposite scale, the total of both has to be equal to 14.
(b)
Interpretation Introduction
Interpretation:
The pH and pOH of the given aqueous solution at 25∘C has to be calculated
Concept Information:
In strong acids, the ionization of acid is complete. This implies that the concentration of the hydrogen ion or hydronium ion will be equal to the initial concentration of the acid at equilibrium.
Strong bases: Strong bases are formed from alkali metals and alkaline earth metals of Group IA and IIA respectively.
Strong base dissociates into its constituent ions.
pOH: The pOH of a solution is defined as the negative base-10 logarithm of the hydroxide ion [OH-] concentration. pOH scale is analogous to pH scale.
pOH=-log[OH-]
Relationship between pH and pOH:
pOH is similar to pH. The only difference is that in pOH the concentration of hydroxide ion is used as a scale while in pH, the concentration of hydronium ion is used.
The relationship between the hydronium ion concentration and the hydroxide ion concentration is given by the equation,
pH+pOH=14,at25oC
As pOH and pH are opposite scale, the total of both has to be equal to 14.
(c)
Interpretation Introduction
Interpretation:
The pH and pOH of the given aqueous solution at 25∘C has to be calculated
Concept Information:
In strong acids, the ionization of acid is complete. This implies that the concentration of the hydrogen ion or hydronium ion will be equal to the initial concentration of the acid at equilibrium.
Strong bases: Strong bases are formed from alkali metals and alkaline earth metals of Group IA and IIA respectively.
Strong base dissociates into its constituent ions.
pOH: The pOH of a solution is defined as the negative base-10 logarithm of the hydroxide ion [OH-] concentration. pOH scale is analogous to pH scale.
pOH=-log[OH-]
Relationship between pH and pOH:
pOH is similar to pH. The only difference is that in pOH the concentration of hydroxide ion is used as a scale while in pH, the concentration of hydronium ion is used.
The relationship between the hydronium ion concentration and the hydroxide ion concentration is given by the equation,
pH+pOH=14,at25oC
As pOH and pH are opposite scale, the total of both has to be equal to 14.
Please predict the product for the following reactions in a drawn out solution.
Draw the complete mechanism for the reaction below. Please include appropriate arrows, intermediates, and formal charges.
(c) The following data have been obtained for the hydrolysis of sucrose, C12H22O11, to
glucose, C6H12O6, and fructose C6H12O6, in acidic solution:
C12H22O11 + H2O → C6H12O6 + C6H12O6
[sucrose]/mol dm³
t/min
0
0.316
14
0.300
39
0.274
60
0.256
80
0.238
110
0.211
(i) Graphically prove the order of the reaction and determine the rate constant of the
reaction.
(ii) Determine the half-life, t½ for the hydrolysis of sucrose.