Concept explainers
Interpretation: Given set of species has to be classified as Bronsted acid or base, or both.
Concept Introduction: Bronsted's definition is based on the
Example: Consider the following reaction.
Hydrogen chloride donates a proton, and hence it is a Bronsted acid. Ammonia accepts a proton, and hence it is a Bronsted base.
Bronsted base accepts a proton to give a protonated species known as conjugate acid and Bronsted acid loses a proton deprotonated species is known as conjugate base. When a proton is removed the resulting species will have a negative charge and when a proton is added the resulting species will have a positive charge.

Answer to Problem 16.3QP
Answer
The species (a) is both Bronsted acid and Bronsted base.
The species (b) is Bronsted base.
The species (c) is Bronsted acid.
The species (d) is Bronsted base.
The species (e) is Bronsted acid.
The species (f) is Bronsted base.
The species (g) is Bronsted base.
The species (h) is Bronsted base.
The species (i) is Bronsted acid.
The species (j) is Bronsted acid.
Explanation of Solution
(a)
To classify:
To identify the species as Bronsted acid.
Water molecule loses a proton to form a conjugate base as shown above. Therefore, water can act as Bronsted acid.
To identify the species as Bronsted base.
Water molecule accepts a proton to form hydronium ion. Therefore, water can act as Bronsted base.
From this we can conclude that water can act as both Bronsted acid and Bronsted base.
(b)
To classify:
To identify the species as Bronsted acid.
Hydroxide ion cannot lose a proton to form a conjugate base. Therefore, hydroxide ion cannot act as Bronsted acid.
To identify the species as Bronsted base.
Hydroxide ion accepts a proton to form water molecule. Therefore, hydroxide ion can act as Bronsted base.
From this we can conclude that hydroxide ion can only act as Bronsted base.
(c)
To classify:
To identify the species as Bronsted acid.
The hydronium ion can lose a proton to form a conjugate base as shown above. Therefore, hydronium ion can act as Bronsted acid.
To identify the species as Bronsted base.
Hydronium ion cannot accept proton to form a conjugate acid.
From this we can conclude that hydronium ion can act only as Bronsted acid.
(d)
To classify:
To identify the species as Bronsted acid.
Ammonia cannot lose a proton to form a conjugate base. Therefore, ammonia cannot act as Bronsted acid.
To identify the species as Bronsted base.
Ammonia accepts a proton to form ammonium ion. Therefore, ammonia ion can act as Bronsted base.
From this we can conclude that ammonia can act only as Bronsted base.
(e)
To classify:
To identify the species as Bronsted acid.
The ammonium ion can lose a proton to form a conjugate base as shown above. Therefore ammonium ion can act as Bronsted acid.
To identify the species as Bronsted base.
Ammonium ion cannot accept proton to form a conjugate acid.
From this we can conclude that ammonium ion can act only as Bronsted acid.
(f)
To classify:
To identify the species as Bronsted acid.
To identify the species as Bronsted base.
From this we can conclude that
(g)
To classify:
To identify the species as Bronsted acid.
To identify the species as Bronsted base.
From this we can conclude that
(h)
To classify:
To identify the species as Bronsted acid.
Explanation:
To identify the species as Bronsted base.
From this we can conclude that
(i)
To classify:
To identify the species as Bronsted acid.
The
To identify the species as Bronsted base.
From this we can conclude that
(j)
To classify:
To identify the species as Bronsted acid.
The
To identify the species as Bronsted base.
From this we can conclude that
The given set of species are classified as Bronsted acid or base, or both.
Want to see more full solutions like this?
Chapter 16 Solutions
CHEMISTRY:ATOMS FIRST-2 YEAR CONNECT
- What alkene or alkyne yields the following products after oxidative cleavage with ozone? Click the "draw structure" button to launch the drawing utility. draw structure ... andarrow_forwardDraw the products of the stronger acid protonating the other reactant. H3C-C=C-4 NH2 KEq CH H3C `CH3 Product acid Product basearrow_forward2. Draw the missing structure(s) in each of the following reactions. The missing structure(s) can be a starting material or the major reaction product(s). C5H10 Br H-Br CH2Cl2 + enant.arrow_forward
- Draw the products of the stronger acid protonating the other reactant. KEq H₂C-O-H H3C OH Product acid Product basearrow_forwardDraw the products of the stronger acid protonating the other reactant. OH KEq CH H3C H3C `CH3 Product acid Product basearrow_forward2. Draw the missing structure(s) in each of the following reactions. The missing structure(s) can be a starting material or the major reaction product(s). Ph H-I CH2Cl2arrow_forward
- 3 attempts left Check my work Draw the products formed in the following oxidative cleavage. [1] 03 [2] H₂O draw structure ... lower mass product draw structure ... higher mass productarrow_forward2. Draw the missing structure(s) in each of the following reactions. The missing structure(s) can be a starting material or the major reaction product(s). H-Br CH2Cl2arrow_forwardWrite the aldol condensation mechanism and product for benzaldehyde + cyclohexanone in a base. Then trans-cinnamaldehyde + acetone in base. Then, trans-cinnamaldehyde + cyclohexanone in a base.arrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoLiving By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHERGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning




