Concept explainers
(a)
Interpretation:
Using VSEPR theory, the geometry of the hydronium ion
Concept Information:
The shape of a molecule is predicted using Lewis structure and VSEPR (valence-shell electron-pair repulsion) model.
The shape of the molecule depends on the number of electron domains available for the central atom of the molecule.
The VSEPR model predicts that because these electron domains repel one another, they will arrange themselves to be as far apart as possible, thus minimizing the repulsive interactions between them.
For a molecule of type
To Predict: The geometry of hydronium ion
(b)
Interpretation:
The reason why the species
Concept Information:
The shape of a molecule is predicted using Lewis structure and VSEPR (valence-shell electron-pair repulsion) model.
The shape of the molecule depends on the number of electron domains available for the central atom of the molecule.
The VSEPR model predicts that because these electron domains repel one another, they will arrange themselves to be as far apart as possible, thus minimizing the repulsive interactions between them.
For a molecule of type
To Explain: The reason why the species
Want to see the full answer?
Check out a sample textbook solutionChapter 16 Solutions
CHEMISTRY:ATOMS FIRST-2 YEAR CONNECT
- 2(a) Provide the Lewis structures for both CH3OH and C2H3Cl. 2(b) What is the largest bond angle among all the bond angles in CH3OH and C2H3Cl? Listthe three atoms making this largest bond angle, and estimate the value of the angle.2(c) What intermolecular forces are present(i) between CH3OH molecules?(ii) between C2H3Cl molecules?arrow_forwardBoth aluminum and iodine form chlorides, Al₂Cl₆ and I₂Cl₆ ,with “bridging” Cl atoms. The Lewis structures are (a) What is the formal charge on each atom? (b) Which of these molecules has a planar shape? Explain.arrow_forwardChemical species are said to be isoelectronic if they have the same Lewis structure (regardless of charge). Consider these ions and write a Lewis structure for a neutral molecule that is isoelectronic with them. (a) CN–, (b) NH4+ (c) CO3 2–arrow_forward
- 19. :O: || :0-N- O: Which of the following statements, if true, would support the claim that the NO3 ion, represented above, has three resonance structures? (A) The NO3 ion is not a polar species. (B) The oxygen-to-nitrogen-to-oxygen bond angles are 90°. (C) One of the bonds in NO3 is longer than the other two. (D) One of the bonds in NO3¯ is shorter than the other two.arrow_forwardAcetylene (C2H2) and nitrogen (N2) both contain a triplebond, but they differ greatly in their chemical properties.(a) Write the Lewis structures for the two substances. (b) By referring to Appendix C, look up the enthalpies of formationof acetylene and nitrogen. Which compound is more stable?(c) Write balanced chemical equations for the completeoxidation of N2 to form N2O5(g) and of acetylene to formCO2(g) and H2O(g). (d) Calculate the enthalpy of oxidationper mole for N2 and for C2H2 (the enthalpy of formationof N2O5(g) is 11.30 kJ/mol). (e) Both N2 and C2H2 possesstriple bonds with quite high bond enthalpies (Table 8.3).Calculate the enthalpy of hydrogenation per mole for bothcompounds: acetylene plus H2 to make methane, CH4;nitrogen plus H2 to make ammonia, NH3.arrow_forwardEthylene, C₂H₄, and tetrafluoroethylene, C₂F₄, are used tomake the polymers polyethylene and polytetrafluoroethylene(Teflon), respectively.(a) Draw the Lewis structures for C₂H₄ and C₂F₄, and give theideal H-C-H and F-C-F bond angles.(b) The actual H-C-H and F-C-F bond angles are 117.4and 112.4, respectively. Explain these deviations.arrow_forward
- Draw the Lewis structure with lowest formal charges, and determine the charge of each atom in (a) OCS; (b) NO. (C)CN−; (d) ClO−.arrow_forwardCyanogen (CN)2 is known as pseodohalogen because it has some properties like halogens. It is composed of two CN’s joined together.(i) Draw the Lewis structure for all the possible combination for (CN)2.(ii) Calculate the formal charge and determine which one of the structures that you have drawn is most stable.(iii) For the stable structure, determine the geometry around the two central atoms.(iv) For the stable structure, draw the dipole arrows for the bonds.(v) Base on the stable structure, determine the polarity of molecule and state your reason.arrow_forwardWrite an equation for the Lewis acid / Lewis base reaction between boron trifluoride and dimethyl sulfide [(CH3)2S]. Use the curved arrows to show the motion of the electrons and, if present, show the formal chargesarrow_forward
- The two compounds nitrogen dioxide and dinitrogentetraoxide are introduced in Section 3.13.(a) NO2 is an odd-electron compound. Draw the bestLewis diagrams possible for it, recognizing that oneatom cannot achieve an octet configuration. Use formal charges to decide whether that should be the(central) nitrogen atom or one of the oxygen atoms.(b) Draw resonance forms for N2O4 that obey the octetrule. The two N atoms are bonded in this molecule.arrow_forwardConsider the reaction BF3 + NH3 -> F3B-NH3 (a) Describe the changes in hybridization of the B and N atoms as a result of this reaction. (b) Describe the shapes of all the reactant molecules with their bond angles. (c) Draw the overall shape of the product molecule and identify the bond angles around B and N atoms. (d) What is the name of the bond between B and N. (e)Describe the bonding orbitals that make the B and F, B and N & N and H bonds in the product molecule.arrow_forwardAcetylene 1C2H22 and nitrogen 1N22 both contain a triplebond, but they differ greatly in their chemical properties.(a) Write the Lewis structures for the two substances. (b) Byreferring to Appendix C, look up the enthalpies of formationof acetylene and nitrogen. Which compound is more stable?(c) Write balanced chemical equations for the completeoxidation of N2 to form N2O51g2 and of acetylene to formCO21g2 and H2O1g2. (d) Calculate the enthalpy of oxidationper mole for N2 and for C2H2 (the enthalpy of formationof N2O51g2 is 11.30 kJ>mol). (e) Both N2 and C2H2 possesstriple bonds with quite high bond enthalpies (Table 8.3).Calculate the enthalpy of hydrogenation per mole for bothcompounds: acetylene plus H2 to make methane, CH4;nitrogen plus H2 to make ammonia, NH3.arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning