Concept explainers
Figure 16.21 shows a continuous foundation with a width of 1.8 m constructed at a depth of 1.2 m in a granular soil. The footing is subjected to an eccentrically inclined loading with e = 0.3 m, and α = 10°. Determine the gross ultimate load, Qu(ei), that the footing can support using:
- a. Meyerhof (1963) method [Eq. (16.52)]
- b. Saran and Agarwal (1991) method [Eq. (16.53)]
- c. Patra et al. (2012) reduction factor method [Eq. (16.54)]
(a)
The gross ultimate load
Answer to Problem 16.19P
The gross ultimate load
Explanation of Solution
Given information:
The unit weight of the soil
The value of cohesion
The soil friction angle
The location of depth of footing base
The width of the footing B is 1.8 m.
The value of eccentricity e is 0.3 m.
The inclined angle
Calculation:
Determine the effective width of the footing using the relation.
Substitute 1.8 m for B and 0.3 for e.
For the continuous foundation, all shape factors are equal to one
Determine the depth factor
Substitute 1.2 m for
Determine the depth factor
Substitute
Determine the inclination factor
Substitute
Determine the inclination factor
Substitute
Determine the ultimate bearing capacity of the soil
Here,
Refer Table 16.2, “Bearing-capacity factors
For
The values of
Substitute 0 for
Determine the gross ultimate load
Substitute
Therefore, the gross ultimate load
(b)
The gross ultimate load
Answer to Problem 16.19P
The gross ultimate load
Explanation of Solution
Given information:
The unit weight of the soil
The value of cohesion
The soil friction angle
The location of depth of footing base
The width of the footing B is 1.8 m.
The value of eccentricity e is 0.3 m.
The inclined angle
Calculation:
Determine the ratio of
Substitute 0.3 for e and 1.8 m for B.
Determine the gross ultimate load
Here,
Refer Figure 16.14, “Variation of
Take the
Refer Figure 16.15, “Variation of
Take the
Refer Figure 16.16, “Variation of
Take the
Substitute 0 for
Therefore, the gross ultimate load
(c)
The gross ultimate load
Answer to Problem 16.19P
The gross ultimate load
Explanation of Solution
Given information:
The unit weight of the soil
The value of cohesion
The soil friction angle
The location of depth of footing base
The width of the footing B is 1.8 m.
The value of eccentricity e is 0.3 m.
The inclined angle
Calculation:
For the continuous foundation, all shape factors are equal to one
Determine the depth factor
Substitute 1.2 m for
Determine the depth factor
Substitute
Determine the ultimate bearing capacity of the soil
Refer Table 16.2, “Bearing-capacity factors
Take the
Substitute 0 for
Determine the gross ultimate load
Substitute 1.8 m for B,
Therefore, the gross ultimate load
Want to see more full solutions like this?
Chapter 16 Solutions
Principles of Geotechnical Engineering (MindTap Course List)
- Consider a continuous foundation of width B = 1.4 m on a sand deposit with c = 0, = 38, and = 17.5 kN/m3. The foundation is subjected to an eccentrically inclined load (see Figure 6.33). Given: load eccentricity e = 0.15 m, Df = 1 m, and load inclination = 18. Estimate the failure load Qu(ei) per unit length of the foundation a. for a partially compensated type of loading [Eq. (6.89)] b. for a reinforced type of loading [Eq. (6.90)]arrow_forwardIf the footing shown in figure 1 is a 1.6m x 1.6 footing at 2.1m depth, determine the kN load combination 1 bearing capacity, in accordance with Eurocode 7, if the water table is 1.4m below the surface and properties of the founding material are as follows: Dense coarse gravels -23°,c'-3.1kN/m², "y'−9.9kN/m², "buk 16.2kN/m³arrow_forwardQuestion 2) For a shallow foundation shown below: A. Estimate the ultimate bearing capacity when the water table located at a depth of 2 m below the ground surface. B. Estimate the moments about the x- and y-axis; assume that the foundation is subjected to a vertical load and a moment. If eg and eL is 0.33 m and 0.12 m, respectively. G.S Iz 2 m (2 m x 3 m) Silty clay Yo=17 kN/m³ , Ysat = 20 kN/m3 %3D 6 m c'=78 kN/m? 0'=35° Shear modulus=250 kN/m? CS Scanned with CamScannerarrow_forward
- Question attachedarrow_forwardA square shallow foundation (B × B) is planned to be constructed on a normality consolidated (NC) clay soil as shown in the below figure. The maximum acceptable settlement for the foundation is equal to 2.0 inches (5 cm), and the safety factor against bearing capacity is FS = 4. Determine the size of foundation. (Note: To simplify the calculations, ignore both the elastic settlement and secondary compression settlement. Also consider Ao'ave = 4o'm) Q = 500 kN Ysat = 19.24 kN/m³ eo = 0.8 C. = 0.25 p'= 0 c' = 25 kPa FS again Bearing Capacity = 4 Acceptable settlement = 2.0 inches 2 m В ХВ 10 marrow_forward(foundation engineering)arrow_forward
- A rectangle pad footing with dimension bx1 = 2mx2m is subjected to axial loading N^tt = 600 kN. Foundation are constructed on ground surface shown as Figure 1. The water table is at -1.5m. The average unit weight of mass between soil and concrete above of the bottom foundation is given tb = 22 kN/m3. The results of the test of the relationship between the pressure and void ratio is shown in table. Load factor n is given n = 1.15.arrow_forwardA rectangular footing has a dimensions shown and is acted upon by a dead load of 722 kN and a live load of 620 kN. The column dimension is 326 x 662 mm where he shorter dimension is parallel to B The thickness of the footing is 408mm. f'c=28 MPa and fy=420 MPa for diameter 20mm bars. A=3.1m and B=5.1marrow_forwardA square shallow foundation (B × B) is planned to be constructed on a normality consolidated (NC) clay soil as shown in the below figure. The maximum acceptable settlement for the foundation is equal to 2.0 inches (5 cm), and the safety factor against bearing capacity is FS = 4. Determine the size of foundation. (Note: To simplify the calculations, ignore both the elastic settlement and secondary compression settlement. Also consider 4o'ave = 40'm) Q = 500 kN Ysat = 19.24 kN/m³ en = 0.8 C. = 0.25 p'= 0 c'= 25 kPa 2 m B ×B FS again Bearing Capacity = 4 Acceptable settlement = 2.0 inches 10 marrow_forward
- No diagram. Just this informationarrow_forwardA 10ft x 8ft foundation is set 4 feet below grade in the geotechnical setting provided in the above problem No 1, an applied load Q of 420kips is supported by this footing. Calculate the change of stress at 15ft and 30ft below grade at the center of the footing using: a. The 2:1 method b. m and n method The foundation is presented in problem above is subjected to a vertical force as noted and a single moment of 100 kip-ft perpendicular to 10ft face. Calculate: a. Ultimate bearing capacity using modified method b. Factor of safety in designarrow_forwardcan you answer me?arrow_forward
- Principles of Geotechnical Engineering (MindTap C...Civil EngineeringISBN:9781305970939Author:Braja M. Das, Khaled SobhanPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage Learning
- Fundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning