Chemistry: An Atoms-Focused Approach (Second Edition)
Chemistry: An Atoms-Focused Approach (Second Edition)
2nd Edition
ISBN: 9780393614053
Author: Thomas R. Gilbert, Rein V. Kirss, Stacey Lowery Bretz, Natalie Foster
Publisher: W. W. Norton & Company
Question
Book Icon
Chapter 16, Problem 16.127QA
Interpretation Introduction

To find:

In the titration of pyridine and HCl, answer the following questions.

a) The pH at equivalence point.

b) The best choice indicator for this titration.

c) The pH for the titration after different volumes.

d) Sketch the titration curve for this titration and indicate which major species are present in the solution when pH = pKa at equivalence point and at the end of titration.

Expert Solution & Answer
Check Mark

Answer to Problem 16.127QA

Solution:

a) pH at equivalence point = 2.95

b) Methyl orange

c) At 0.0 mL pH = 9.40, at 1.0 mL pH =6.26, at 3.0 mL pH =5.69, at 7.0 mL pH =5.05, at 9.0 mL pH =4.69, at 10.0 mL pH =4.43, at 10.5 mL pH =4.25, at 11.0 mL pH =3.96, at 11.5 mL pH =3.16, at 11.8 mL pH =2.43, at 12.5 mL pH =1.79, at 15.0 mL pH =1.26, at 20.0 mL pH =0.93.

d)

Chemistry: An Atoms-Focused Approach (Second Edition), Chapter 16, Problem 16.127QA , additional homework tip  1

Explanation of Solution

1) Concept:

To calculate the pH of a weak base with a strong acid, we need to use reaction stoichiometry and RICE table. First, we will calculate the equivalence point from the volume and molarity of base and acid. We will calculate the pH at equivalence point by using RICE table. At equivalence point, moles of pyridine and HCl are the same, so the only species present is protonated pyridine. Using the hydrolysis of protonated pyridine and ICE table we can find the pH at the equivalence point. Suitable indicator for this titration is decided by comparing the pH at equivalence point and the pH range of indicators given in Figure 16.5. We will sketch the titration curve based on the pH of the solution and mL of  a strong acid added to the weak base.

2) Formula:

i) pH = - logH3O+ 

ii) pKa=-logKa  

iii) Ka=A-H3O+HA

iv) Ka=10-pKa

3) Given:

i) Concentration of pyridine =367 mM = 367 mM ×1 M1000 mM=0.367 M

ii) Volume of pyridine = 15.8 mL=0.0158 L

iii) Concentration of HCl = 0.500 M

iv) pKb=8.77

v) Kb=10-8.77=1.70 ×10-9 

vi) Ka=KwKb= 1.0 ×10-141.70 ×10-9=5.88 ×10-6

4) Calculations:

a) To calculate the equivalence point of the titration between pyridine and  HCl, first we will write the reaction and calculate the volume of HCl.

C5H5N aq+HCl aq C5H5NH+aq+Cl- (aq)

From the balanced chemical equation, the mole ratio between pyridine and HCl is 1:1.

At the equivalence point, moles of pyridine = moles of HCl

npyridine= 0.367 M × 0.0158 L= 0.0057986 mol pyridine

Moles of HCl at the equivalence point =0.0057986 mol

Volume of HCl required to reach the equivalence point

VHCl= 0.00579860.500 M= 0.0115972 L=11.60 mL

The volume of HCl required to reach the equivalence point =11.60 mL

At equivalence point the number of moles of a weak base is equal to the number of moles of a strong acid. So, at the end of the reaction, the solution contains protonated pyridine which will govern the pH of the solution at the equivalence point.

C5H5N aq+HCl aq C5H5NH+aq+Cl- (aq)
C5H5N aq HCl aq C5H5NH+aq
Initial 0.0057986 mol 0.0057986 mol 0
Added - 0.0057986 mol - 0.0057986 mol + 0.0057986 mol
Final 0 0 0.0057986 mol

We have the moles of the conjugate acid, hence, we can calculate the pH of the solution using the RICE table for protonated pyridine.

The dissociation reaction of protonated pyridine (conjugate acid) is written as:

C5H5NH+aq+H2O l  C5H5N aq+H3O+(aq) 

Now calculating new molarity of conjugate acid as:

 M=0.0057986 mol0.0158+0.01160L =0.212 M

We can use RICE table to calculate the pH of the solution of conjugate acid.

C5H5NH+aq+H2O l  C5H5N aq+H3O+(aq)
C5H5NH+aq(M) C5H5N aq(M) H3O+(aq)(M)
Initial 0.212 0 0
Change -x +x +x
Change 0.212-x x x

Now write the Ka expression to calculate the [H3O+].

Ka=C5H5NH3O+C5H5NH+

5.88 ×10-6 =x(x)(0.212-x)

We will apply the 5% rule here, so we can ignore x from it,  0.212-x=0.212

5.88 ×10-6 =x(x)(0.212)

x2=1.2466 ×10-6

x=0.001116

x= H3O+= 0.001116

pH= -logH3O+= -log0.001116=2.95

The pH of the solution at equivalence point = 2.95

b) The pH of the solution at equivalence point =2.95, we can use methyl orange as an indicator for this titration.

c) Calculate the pH for the titration after following the volume of HCl added to a weak base.

1) 0.0mL HCl added to a weak base.

We can use RICE table to calculate the pH of the solution of pyridine at 0.0 mL addition of HCl

C5H5N aq+H2O l  C5H5NH+aq+OH-(aq)
C5H5Naq(M) C5H5NH+ aq(M) OH-(aq)(M)
Initial 0.367 0 0
Change -x +x +x
Equilibrium 0.367-x x x

Now write the Kb expression to calculate the [OH-].

Kb=C5H5NH+OH-C5H5N

1.70 ×10-9 =x(x)(0.367-x)

We will apply the 5% rule here, so we can ignore x from it, 0.367-x=0.367,

1.70 ×10-9 =x(x)(0.367)

x2=6.27 ×10-10

x=2.498 ×10-5

x= OH-= 2.498 ×10-5

pOH= -logOH-= -log2.498 ×10-5=4.60

pH =14- pOH

pH =14- 4.60

pH =9.40

Initial pH of the pyridine  = 9.40

2) 1.0mL HCl added to a weak base.

Calculate the moles of pyridine from 15.80 mL and 0.367 M.

0.0158 L ×0.367 mol1 L = 0.0057986 mol

Calculate the mole of HCl, when 1.0 mL added to the weak base.

1.0 mL × 1 L1000 mL ×0.500 mol1 L = 0.000500 mol HCl

We can use a modified RICE table to determine the how many moles of C5H5N remain and how many moles of C5H5NH+ are produced.

C5H5Naq+HCl l  C5H5NH+ aq+Cl-(aq)
C5H5N aq(mol) HCl aq(mol) C5H5NH+aq(mol)
Initial 0.0057986 0.000500 0
Change -0.000500 -0.000500 +0.000500
Final 0.005299 0 0.000500

The total sample volume is 15.8  mL + 1.0 mL = 16.8 mL or 0.0168 L and the concentrations of the base and conjugate acid is

C5H5N= 0.005299 mol0.0168 L=0.3154 M

C5H5NH+= 0.000500 mol0.0168 L=0.02976 M

Using these values in the Henderson–Hasselbalch equation gives us

pOH=pKb+logC5H5NH+C5H5N

pOH=8.77+log0.0297620.3154 =8.77+log0.097365=8.77-1.025191=7.7448

pH=14-7.7448=6.26

3) 3.0mL HCl added to a weak base.

Calculate the mole of HCl, when 3.0 mL is added to the weak base.

3.0 mL × 1 L1000 mL ×0.500 mol1 L = 0.0015 mol HCl

We can use a modified RICE table to determine the how many moles of C5H5N remain and how many moles of C5H5NH+ are produced.

C5H5Naq+HCl l  C5H5NH+ aq+Cl-(aq)
C5H5N aq(mol) HCl aq(mol) C5H5NH+aq(mol)
Initial 0.0057986 0.0015 0
Change -0.0015 -0.0015 +0.0015
Final 0.004299 0 0.0015

The total sample volume is 15.8  mL + 3.0 mL = 18.8 mL or 0.0188 L and the concentrations of the base and conjugate acid are

C5H5N= 0.004299 mol0.0188 L=0.2286 M

C5H5NH+= 0.0015 mol0.0188 L=0.07979 M

Using these values in the Henderson–Hasselbalch equation gives us

pOH=pKb+logC5H5NH+C5H5N

pOH=8.77+log0.079790.2286 =8.77+log0.3490=8.77-0.45717=8.3128

pH=14-8.3128=5.69

4) 7.0mL HCl added to a weak base.

Calculate the mole of HCl, when 7.0 mL is added to the weak base.

7.0 mL × 1 L1000 mL ×0.500 mol1 L = 0.0035 mol HCl

We can use a modified RICE table to determine the how many moles of C5H5N remain and how many moles of C5H5NH+  are produced.

C5H5Naq+HCl l  C5H5NH+ aq+Cl-(aq)
C5H5N aq(mol) HCl aq(mol) C5H5NH+aq(mol)
Initial 0.0057986 0.0035 0
Change -0.0035 -0.0035 +0.0035
Final 0.002299 0 0.0035

The total sample volume is 15.8  mL + 7.0 mL = 22.8 mL or 0.0228 L and the concentrations of the base and conjugate acid are

C5H5N= 0.002299 mol0.0228 L=0.1008 M

C5H5NH+= 0.0035 mol0.0228 L=0.1535 M

Using these values in the Henderson–Hasselbalch equation gives us

pOH=pKb+logC5H5NH+C5H5N

pOH=8.77+log0.15350.1008 =8.77+log1.5228=8.77+0.183=8.95

pH=14-8.95=5.05

5) 9.0mL HCl added to a weak base.

Calculate the mole of HCl, when 9.0 mL is added to the weak base.

9.0 mL × 1 L1000 mL ×0.500 mol1 L = 0.0045 mol HCl

We can use a modified RICE table to determine the how many moles of C5H5N remain and how many moles of C5H5NH+ are produced.

C5H5Naq+HCl l  C5H5NH+ aq+Cl-(aq)
C5H5N aq(mol) HCl aq(mol) C5H5NH+aq(mol)
Initial 0.0057986 0.0045 0
Change -0.0045 -0.0045 +0.0045
Final 0.001299 0 0.0045

The total sample volume is 15.8  mL + 9.0 mL = 24.8 mL or 0.0248 L and the concentrations of the base and conjugate acid are

C5H5N= 0.001299 mol0.0248 L=0.0524 M

C5H5NH+= 0.0045 mol0.0248 L=0.1815 M

Using these values in the Henderson–Hasselbalch equation gives us

pOH=pKb+logC5H5NH+C5H5N

pOH=8.77+log0.18150.0524 =8.77+log3.46374=8.77+0.54=9.31

pH=14-9.31=4.69

6) 10.0mL HCl added to a weak base.

Calculate the mole of HCl, when 10.0 mL isadded to the weak base.

10.0 mL × 1 L1000 mL ×0.500 mol1 L = 0.0050 mol HCl

We can use a modified RICE table to determine the how many moles of C5H5N remain and how many moles of C5H5NH+ are produced.

C5H5Naq+HCl l  C5H5NH+ aq+Cl-(aq)
C5H5N aq(mol) HCl aq(mol) C5H5NH+aq(mol)
Initial 0.0057986 0.0050 0
Change -0.0050 -0.0050 +0.0050
Final 0.000799 0 0.0050

The total sample volume is 15.8  mL + 10.0 mL = 25.8 mL or 0.0258 L and the concentrations of the base and conjugate acid are

C5H5N= 0.000799 mol0.0258 L=0.0310 M

C5H5NH+= 0.0050 mol0.0258 L=0.1938 M

Using these values in the Henderson–Hasselbalch equation gives us

pOH=pKb+logC5H5NH+C5H5N

pOH=8.77+log0.19380.0310 =8.77+log6.2516=8.77+0.796=9.57

pH=14-9.57=4.43

7) 10.5mL HCl added to a weak base.

Calculate the mole of HCl, when 10.5 mL is added to the weak base.

10.5 mL × 1 L1000 mL ×0.500 mol1 L = 0.0053 mol HCl

We can use a modified RICE table to determine the how many moles of C5H5N remain and how many moles of C5H5NH+ are produced.

C5H5Naq+HCl l  C5H5NH+ aq+Cl-(aq)
C5H5N aq(mol) HCl aq(mol) C5H5NH+aq(mol)
Initial 0.0057986 0.0053 0
Change -0.0053 -0.0053 +0.0053
Final 0.000549 0 0.0053

The total sample volume is 15.8  mL + 10.5 mL = 26.3 mL or 0.0263L and the concentrations of the base and conjugate acid is

C5H5N= 0.000549 mol0.0263 L=0.0209 M

C5H5NH+= 0.0053 mol0.0263 L=0.1996 M

Using these values in the Henderson–Hasselbalch equation gives us

pOH=pKb+logC5H5NH+C5H5N

pOH=8.77+log0.19960.0209 =8.77+log9.55024=8.77+0.98=9.75

pH=14-9.75=4.25

8) 11.0mL HCl added to a weak base.

Calculate the mole of HCl, when 11.0 mL ia added to the weak base.

11.0 mL × 1 L1000 mL ×0.500 mol1 L = 0.0055 mol HCl

We can use a modified RICE table to determine the how many moles of C5H5N remain and how many moles of C5H5NH+ are produced.

C5H5Naq+HCl lC5H5NH+ aq+Cl-(aq)
C5H5N aq(mol) HCl aq(mol) C5H5NH+aq(mol)
Initial 0.0057986 0.0055 0
Change -0.0055 -0.0055 +0.0055
Final 0.000299 0 0.0055

The total sample volume is 15.8  mL + 11.0 mL = 26.8 mL or 0.0268 L and the concentrations of the base and conjugate acid are

C5H5N= 0.000299 mol0.0268 L=0.0111 M

C5H5NH+= 0.0055 mol0.0268 L=0.2052 M

Using these values in the Henderson–Hasselbalch equation gives us

pOH=pKb+logC5H5NH+C5H5N

pOH=8.77+log0.20520.0111 =8.77+log18.4193=8.77+1.267=10.04

pH=14-10.04=3.96

9) 11.5mL HCl added to a weak base.

Calculate the mole of HCl, when 11.5 mL is added to the weak base.

11.5 mL × 1 L1000 mL ×0.500 mol1 L = 0.00575 mol HCl

We can use a modified RICE table to determine the how many moles of C5H5N remain and how many moles of C5H5NH+ are produced.

C5H5Naq+HCl l  C5H5NH+ aq+Cl-(aq)
C5H5N aq(mol) HCl aq(mol) C5H5NH+aq(mol)
Initial 0.0057986 0.00575 0
Change -0.00575 -0.00575 +0.00575
Final 0.0000486 0 0.00575

The total sample volume is 15.8  mL + 11.5 mL = 27.3 mL or 0.0273 L and the concentrations of the base and conjugate acid are

C5H5N= 0.0000486 mol0.0273 L=0.0018 M

C5H5NH+= 0.00575 mol0.0273L=0.2106 M

Using these values in the Henderson–Hasselbalch equation gives us

pOH=pKb+logC5H5NH+C5H5N

pOH=8.77+log0.21060.0018 =8.77+log117=8.77+2.068=10.84

pH=14-10.84=3.16

10) 11.8mL HCl added to a weak base.

Calculate the mole of HCl, when 11.8 mL is added to the weak base.

11.8 mL × 1 L1000 mL ×0.500 mol1 L = 0.0059 mol HCl

We can use a modified RICE table to determine the how many moles of C5H5N remain and how many moles of C5H5NH+ are produced.

C5H5Naq+HCl l  C5H5NH+ aq+Cl-(aq)
C5H5N aq(mol) HCl aq(mol) C5H5NH+aq(mol)
Initial 0.0057986 0.0059 0
Change -0.0057986 -0.0057986 +0.0057986
Final 0 0.0001014 0.0057986

HCl is a strong acid, the pH of solution can be calculated from the concentration of HCl.

The total sample volume is 15.8  mL + 11.8 mL = 27.6 mL or 0.0276 L.

HCl= 0.0001014 mol0.0276 L=0.0036739 M

pH= -logH3O+= -log0.0036739=2.43

11) 12.5mL HCl added to a weak base.

Calculate the mole of HCl, when 12.5 mL is added to the weak base.

12.5 mL × 1 L1000 mL ×0.500 mol1 L = 0.00625 mol HCl

We can use a modified RICE table to determine the how many moles of C5H5N remain and how many moles of C5H5NH+ are produced.

C5H5Naq+HCl l  C5H5NH+ aq+Cl-(aq)
C5H5N aq(mol) HCl aq(mol) C5H5NH+aq(mol)
Initial 0.0057986 0.00625 0
Change -0.0057986 -0.0057986 +0.0057986
Final 0 0.0004514 0.0057986

HCl is a strong acid, the pH of solution can be calculated from concentration of HCl.

The total sample volume is 15.8  mL + 12.5 mL = 28.3 mL or 0.0283 L.

HCl= 0.0004514mol0.0283 L=0.00160 M

pH= -logH3O+= -log0.00160=1.79

12) 15.0mL HCl added to a weak base.

Calculate the mole of HCl, when 15.0 mL is added to the weak base.

15.0 mL × 1 L1000 mL ×0.500 mol1 L = 0.0075 mol HCl

We can use a modified RICE table to determine the how many moles of C5H5N remain and how many moles of C5H5NH+ are produced.

C5H5Naq+HCl l  C5H5NH+ aq+Cl-(aq)
C5H5N aq(mol) HCl aq(mol) C5H5NH+aq(mol)
Initial 0.0057986 0.0075 0
Change -0.0057986 -0.0057986 +0.0057986
Final 0 0.0017014 0.0057986

HCl is a strong acid, the pH of solution can be calculated from concentration of HCl.

The total sample volume is 15.8  mL + 15.0 mL = 30.8 mL or 0.0308 L.

HCl= 0.0017014 mol0.0308 L=0.0552 M

pH= -logH3O+= -log0.0552=1.26

13) 20.0mL HCl added to a weak base.

Calculate the mole of HCl, when 20.0 mL is added to the weak base.

20.0 mL × 1 L1000 mL ×0.500 mol1 L = 0.010 mol HCl

We can use a modified RICE table to determine the how many moles of C5H5N remain and how many moles of C5H5NH+ are produced.

C5H5Naq+HCl l  C5H5NH+ aq+Cl-(aq)
C5H5N aq(mol) HCl aq(mol) C5H5NH+aq(mol)
Initial 0.0057986 0.010 0
Change -0.0057986 -0.0057986 +0.0057986
Final 0 0.0042014 0.0057986

HCl is a strong acid, the pH of solution can be calculated from concentration of HCl.

The total sample volume is 15.8  mL + 20.0 mL = 35.8 mL or 0.0358 L.

HCl= 0.0042014 mol0.0358 L=0.1174 M

pH= -logH3O+= -log0.1174=0.93

d) Sketch the titration curve (pH vs mL of strong acid added) for this titration and show the major species are present in solution at pH = pka, equivalence point and end point.

Chemistry: An Atoms-Focused Approach (Second Edition), Chapter 16, Problem 16.127QA , additional homework tip  2

Conclusion:

The pH of the solution is calculated from reaction stoichiometry and RICE table at different mL of the titrant added to the weak base and also calculated at equivalence point. Sketch drawn on the basis of pH values and volume of strong acid added to a weak base.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A first order reaction is 46.0% complete at the end of 59.0 minutes. What is the value of k? What is the half-life for this reaction? HOW DO WE GET THERE? The integrated rate law will be used to determine the value of k. In [A] [A]。 = = -kt What is the value of [A] [A]。 when the reaction is 46.0% complete?
3. Provide the missing compounds or reagents. 1. H,NNH КОН 4 EN MN. 1. HBUCK = 8 хно Panely prowseful kanti-chuprccant fad, winddively, can lead to the crading of deduc din-willed, tica, The that chemooices in redimi Грин. " like (for alongan Ridovi MN نيا . 2. Cl -BuO 1. NUH 2.A A -BuOK THE CF,00,H Ex 5)
2. Write a complete mechanism for the reaction shown below. NaOCH LOCH₁ O₂N NO2 CH₂OH, 20 °C O₂N NO2

Chapter 16 Solutions

Chemistry: An Atoms-Focused Approach (Second Edition)

Ch. 16 - Prob. 16.11QACh. 16 - Prob. 16.12QACh. 16 - Prob. 16.13QACh. 16 - Prob. 16.14QACh. 16 - Prob. 16.15QACh. 16 - Prob. 16.16QACh. 16 - Prob. 16.17QACh. 16 - Prob. 16.18QACh. 16 - Prob. 16.19QACh. 16 - Prob. 16.20QACh. 16 - Prob. 16.21QACh. 16 - Prob. 16.22QACh. 16 - Prob. 16.23QACh. 16 - Prob. 16.24QACh. 16 - Prob. 16.25QACh. 16 - Prob. 16.26QACh. 16 - Prob. 16.27QACh. 16 - Prob. 16.28QACh. 16 - Prob. 16.29QACh. 16 - Prob. 16.30QACh. 16 - Prob. 16.31QACh. 16 - Prob. 16.32QACh. 16 - Prob. 16.33QACh. 16 - Prob. 16.34QACh. 16 - Prob. 16.35QACh. 16 - Prob. 16.36QACh. 16 - Prob. 16.37QACh. 16 - Prob. 16.38QACh. 16 - Prob. 16.39QACh. 16 - Prob. 16.40QACh. 16 - Prob. 16.41QACh. 16 - Prob. 16.42QACh. 16 - Prob. 16.43QACh. 16 - Prob. 16.44QACh. 16 - Prob. 16.45QACh. 16 - Prob. 16.46QACh. 16 - Prob. 16.47QACh. 16 - Prob. 16.48QACh. 16 - Prob. 16.49QACh. 16 - Prob. 16.50QACh. 16 - Prob. 16.51QACh. 16 - Prob. 16.52QACh. 16 - Prob. 16.53QACh. 16 - Prob. 16.54QACh. 16 - Prob. 16.55QACh. 16 - Prob. 16.56QACh. 16 - Prob. 16.57QACh. 16 - Prob. 16.58QACh. 16 - Prob. 16.59QACh. 16 - Prob. 16.60QACh. 16 - Prob. 16.61QACh. 16 - Prob. 16.62QACh. 16 - Prob. 16.63QACh. 16 - Prob. 16.64QACh. 16 - Prob. 16.65QACh. 16 - Prob. 16.66QACh. 16 - Prob. 16.67QACh. 16 - Prob. 16.68QACh. 16 - Prob. 16.69QACh. 16 - Prob. 16.70QACh. 16 - Prob. 16.71QACh. 16 - Prob. 16.72QACh. 16 - Prob. 16.73QACh. 16 - Prob. 16.74QACh. 16 - Prob. 16.75QACh. 16 - Prob. 16.76QACh. 16 - Prob. 16.77QACh. 16 - Prob. 16.78QACh. 16 - Prob. 16.79QACh. 16 - Prob. 16.80QACh. 16 - Prob. 16.81QACh. 16 - Prob. 16.82QACh. 16 - Prob. 16.83QACh. 16 - Prob. 16.84QACh. 16 - Prob. 16.85QACh. 16 - Prob. 16.86QACh. 16 - Prob. 16.87QACh. 16 - Prob. 16.88QACh. 16 - Prob. 16.89QACh. 16 - Prob. 16.90QACh. 16 - Prob. 16.91QACh. 16 - Prob. 16.92QACh. 16 - Prob. 16.93QACh. 16 - Prob. 16.94QACh. 16 - Prob. 16.95QACh. 16 - Prob. 16.96QACh. 16 - Prob. 16.97QACh. 16 - Prob. 16.98QACh. 16 - Prob. 16.99QACh. 16 - Prob. 16.100QACh. 16 - Prob. 16.101QACh. 16 - Prob. 16.102QACh. 16 - Prob. 16.103QACh. 16 - Prob. 16.104QACh. 16 - Prob. 16.105QACh. 16 - Prob. 16.106QACh. 16 - Prob. 16.107QACh. 16 - Prob. 16.108QACh. 16 - Prob. 16.109QACh. 16 - Prob. 16.110QACh. 16 - Prob. 16.111QACh. 16 - Prob. 16.112QACh. 16 - Prob. 16.113QACh. 16 - Prob. 16.114QACh. 16 - Prob. 16.115QACh. 16 - Prob. 16.116QACh. 16 - Prob. 16.117QACh. 16 - Prob. 16.118QACh. 16 - Prob. 16.119QACh. 16 - Prob. 16.120QACh. 16 - Prob. 16.121QACh. 16 - Prob. 16.122QACh. 16 - Prob. 16.123QACh. 16 - Prob. 16.124QACh. 16 - Prob. 16.125QACh. 16 - Prob. 16.126QACh. 16 - Prob. 16.127QACh. 16 - Prob. 16.128QACh. 16 - Prob. 16.129QACh. 16 - Prob. 16.130QACh. 16 - Prob. 16.131QACh. 16 - Prob. 16.132QACh. 16 - Prob. 16.133QACh. 16 - Prob. 16.134QACh. 16 - Prob. 16.135QACh. 16 - Prob. 16.136QA
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY