Chemistry: An Atoms-Focused Approach (Second Edition)
Chemistry: An Atoms-Focused Approach (Second Edition)
2nd Edition
ISBN: 9780393614053
Author: Thomas R. Gilbert, Rein V. Kirss, Stacey Lowery Bretz, Natalie Foster
Publisher: W. W. Norton & Company
Question
Book Icon
Chapter 16, Problem 16.126QA
Interpretation Introduction

To find:

a) The pH at the equivalence point

b) The suitable indicator for the titration referring figure 16.5

c) The pH for the titration after 0, 2.5, 5.0, 7.5, 9.8, 10,10.2,10.6,10.8,11,12.5,15,17.5 and 20 mL of base have been added

d) Sketch the titration curve (pH vs mL  of base added) for this titration, and indicate which major species are present in the solution when  pH=pKa, at the equivalence point and when the titration is complete.

Expert Solution & Answer
Check Mark

Answer to Problem 16.126QA

Solution:

a) The calculated pH at the equivalence point is 11.40.

b) The suitable indicator for the titration, referring figure 16.5, is Alizarin Yellow R.

c) The pH for the titration after

1) 0 mL NaOH added is 5.41

2) 2.5 mL NaOH added is 9.39

3) 5.0 mL NaOH added is 9.86

4) 7.5 mL NaOH added is 10.31

5) 9.8 mL NaOH added is 11.17

6) 10 mL NaOH added is 11.39

7) 10.2 mL NaOH added is 11.82

8) 10.6 mL NaOH added is 11.34

9) 10.8 mL NaOH added is 11.57

10) 11 mL NaOH added is 11.72

11) 12.5 mL NaOH added is 12.2

12) 15 mL NaOH added is 12.5

13) 17.5 mL NaOH added is 12.66

14) 20 mL NaOH added is 12.77

d) In the sketched titration curve (pH vs mL  of base added) for this titration, the major species at the half equivalence point are =C6H5-ONa and C6H5-OH when pH=pKa

The major species at the equivalence point is C6H5-ONa.

The major species at the end of titration is NaOH.

Chemistry: An Atoms-Focused Approach (Second Edition), Chapter 16, Problem 16.126QA , additional homework tip  1

Explanation of Solution

1) Concept:

To calculate the pH of a weak acid with a strong base, we need to use reaction stoichiometry and RICE table. First, we will calculate the equivalence point from the volume and molarity of base and acid. We will calculate the pH at equivalence point by using the RICE table. At the equivalence point, moles of phenol and NaOH are equal, so the only species present is phenoxide ion. Using the hydrolysis of phenoxide ions and RICE table, we can find the pH at the equivalence point. Suitable indicator for this titration is decided by comparing the pH at equivalence point and the pH range of indicators given in Figure 16.5. We will sketch the titration curve based on the pH of the solution and mL of  a strong base added to the weak acid.

2) Formulae:

i) pKa= -logKa

ii) pH=pKa+log[base][acid]

iii) n=M×V

iv) Kb=KwKa

3) Given:

i) Volume of phenol = 21.5 mL=0.0215 L

ii) Molarity of phenol =0.120 M

iii) pKa of phenol = 9.89

iv) Molarity of NaOH=0.250M

4) Calculations:

a) Calculating pH of the solution at the equivalence point:

C6H5-OH aq+NaOH aq C6H5-ONaaq+H2O

Step 1)

Finding the volume of NaOH required for the equivalence point by finding the moles of phenol:

At the equivalence point, moles of phenol = moles of NaOH

nphenol=Mphenol×Vphenol=0.120 M ×0.0215 L=0.00258 mol phenol

At the equivalence point, moles of phenol and NaOH are equal. So, there are 0.00258 mol of NaOH.

Calculating the volume of NaOH at the equivalence point from the given molarity and calculated moles as

nNaOH=MNaOH×VNaOH

nNaOHMNaOH=VNaOH=0.00258 mol 0.250 M=0.01032 L

So, at the equivalence point, the volume of NaOH required is 0.01032 L=10.32 mL.

So, the total volume of solution is =21.5+10.32=31.85 mL=0.03185 L

At the equivalence point, sodium salt of phenol is formed, and its moles will be equal to moles of phenol and NaOH consumed =0.00258 mol

Calculating the molarity of sodium phenoxide:

M=nV= 0.00258 mol0.03185 L=0.08108 M

Step 2)

Creating an RICE table for the dissociation of sodium phenoxide (C6H5-ONa):

C6H5-ONa aq+H2OaqC6H5-OH aq+OH-aq
RICE C6H5-ONa C6H5-OH OH-
Initial (M) 0.08108 M 0.0 0.0
Change (M) -x +x +x
Equilibrium (M) (0.08108-x) x x

pKa for phenol =9.89

Ka phenol = 10-pKa=10-9.89= 1.288 ×10-10

Kb=KwKa=1×10-141.288 ×10-10=7.764 ×10-5

Writing the Kb expression for the reaction and calculating pH:

Kb=7.764 ×10-5= x20.08108-x

x2= 7.764 ×10-5×0.08108=6.292 ×10-6

x= 6.292 ×10-6=0.002508 M=OH-

pOH= -logOH-= -log0.00250876=2.600

pH=14-2.600=11.40

The calculated pH at the equivalence point comes out to be 11.40, which falls under the basic range of pH. This is reasonable since the salt of phenol (weak acid) and NaOH(strong base), will be basic.

b) Choosing the indicator, which is suitable for the titration referring to figure 16.5:

A pH indicator is useful within a range of one pH unit above and below the pKa value of the indicator. The pH at the equivalence point is 11.60. The indicator Alizarin yellow R is in the range 10-12, which will be the suitable indicator for this titration.

c) Calculating the pH for the titration after volume of NaOH added to 21.5 mL of weak acid:

The calculated volume of NaOH at the equivalence point is 10.32 mL, so, before reaching this volume, the NaOH would be the limiting reactant, and we can use the Henderson-Hasselbalch equation to find the pH.

1) Addition of 0.0 mL NaOH:

At 0.0mL NaOH added, the pH of the phenol is solely because of phenol. The dissociation reaction of phenol is written as

                               C6H5-OH aq +H2Oaq    C6H5-O- aq    +    H3O+aq
RICE C6H5-OH(M) C6H5-O-(M)     H3O+(M)
Initial (M) 0.120M 0.0 0.0
Change (M) -x +x +x
Equilibrium (M) (0.120-x) x x

Ka= 1.288 ×10-10= x2(0.120-M)

x2=1.288 ×10-10 ×0.120=1.5456 ×10-11

x= 1.5456 ×10-11=3.9314 ×10-6=H3O+

pH= -logH3O+ = -log3.9314 ×10-6 =5.41

So, the pH, when 0.0 mLNaOH were added, is  5.41

2) Addition of 2.5 mL NaOH:

Moles of phenol:nphenol=Mphenol×Vphenol=0.120 M ×0.0215 L=0.00258 mol phenol

Moles of NaOH for 2.5 mL=0.0025L volume:

nNaOH=MNaOH×VNaOH=0.250 M ×0.0025 L= 0.000625 mol NaOH

We create a modified RICE table to determine how many moles of acid remain and how many moles of conjugate base have been produced:

                  C6H5-OH aq +     NaOHaq   C6H5-O- Na+aq  +H2Ol                           C6H5-OH(Mol) NaOH(mol) C6H5-O-(mol)
Initial (mol) 0.00258  0.000625 0.0
Change (mol) -0.000625 -0.000625 +0.000625
Final (mol) 0.001955 0 0.000625

The total sample volume is 21.5  mL + 2.5 mL = 24.0 mL or 0.0240 L, and the concentrations of the base and conjugate acid is

C6H5-OH= 0.001955 mol0.0240 L=0.08146 M

C6H5-O-= 0.000625 mol0.0240 L=0.02604 M

Applying the Henderson-Hasselbalch equation for the above buffer system formed as

pH=pKa+log[base][acid]

pH=9.89+log[0.02604][0.08146]

pH=9.39

3) Addition of 5.0 mL NaOH:

Moles of phenol:nphenol=Mphenol×Vphenol=0.120 M ×0.0215 L=0.00258 mol phenol

Moles of NaOH for 5.0 mL=0.005L volume:

nNaOH=MNaOH×VNaOH=0.250 M ×0.005 L= 0.00125 mol NaOH

We create a modified RICE table to determine how many moles of acid remain and how many moles of conjugate base have been produced:

         C6H5-OH aq +     NaOHaq   C6H5-O- Na+aq  +H2Ol                           C6H5-OH(Mol) NaOH(mol) C6H5-O-(mol)
Initial (mol) 0.00258  0.000125 0.0
Change (mol) -0.00125 -0.00125 +0.00125
Final (mol) 0.00133 0 0.00125

The total sample volume is 21.5  mL + 5.0 mL = 26.5 mL or 0.0265 L, and the concentrations of the base and conjugate acid is

C6H5-OH= 0.001330 mol0.0265 L=0.05019 M

C6H5-O-= 0.00125 mol0.0265 L=0.04717 M

Applying the Henderson-Hasselbalch equation for the above buffer system formed as

pH=pKa+log[base][acid]

pH=9.89+log[0.04717][0.05019]

pH=9.86

4) Addition of 7.5 mL NaOH:

Moles of phenol:nphenol=Mphenol×Vphenol=0.120 M ×0.0215 L=0.00258 mol phenol

Moles of NaOH for 7.5 mL=0.0075L volume:

nNaOH=MNaOH×VNaOH=0.250 M ×0.0075L = 0.001875 mol NaOH

We create a modified RICE table to determine how many moles of acid remains and how many moles of conjugate base have been produced.

         C6H5-OH aq +     NaOHaq   C6H5-O- Na+aq  +H2Ol                           C6H5-OH(Mol) NaOH(mol) C6H5-O-(mol)
Initial (mol) 0.00258  0.001875 0.0
Change (mol) -0.001875 -0.001875 +0.001875
Final (mol) 0.000705 0 0.001875

The total sample volume is 21.5  mL + 7.5 mL = 29.0 mL or 0.029 L, and the concentrations of the base and conjugate acid is

C6H5-OH= 0.000705 mol0.029 L=0.02431 M

C6H5-O-= 0.001875 mol0.029 L=0.06466 M

Applying the Henderson-Hasselbalch equation for the above buffer system formed as

pH=pKa+log[base][acid]

pH=9.89+log[0.06466 ][0.02431]

pH=10.31

5) Addition of 9.8 mL NaOH:

Moles of phenol:nphenol=Mphenol×Vphenol=0.120 M ×0.0215 L=0.00258 mol phenol

Moles of NaOH for 9.8 mL=0.0098L volume:

nNaOH=MNaOH×VNaOH=0.250 M ×0.0098L = 0.00245 mol NaOH

We create a modified RICE table to determine how many moles of acid remain and how many moles of conjugate base have been produced:

         C6H5-OH aq +     NaOHaq   C6H5-O- Na+aq  +H2Ol                           C6H5-OH(Mol) NaOH(mol) C6H5-O-(mol)
Initial (mol) 0.00258  0.00245 0.0
Change (mol) -0.00245 -0.00245 +0.00245
Final (mol) 0.000130 0 0.00245

The total sample volume is 21.5  mL + 9.8 mL = 31.3 mL or 0.0313 L, and the concentrations of the base and conjugate acid is

C6H5-OH= 0.000130 mol0.0313 L=0.00415 M

C6H5-O-= 0.00245 mol0.0313 L=0.07827 M

Applying the Henderson-Hasselbalch equation for the above buffer system formed as

pH=pKa+log[base][acid]

pH=9.89+log[0.07827  ][0.00415]

pH=11.17

6) Addition of 10 mL NaOH:

Moles of phenol:nphenol=Mphenol×Vphenol=0.120 M ×0.0215 L=0.00258 mol phenol

Moles of NaOH for 10 mL=0.01L volume:

nNaOH=MNaOH×VNaOH=0.250 M ×0.010L = 0.0025 mol NaOH

We create a modified RICE table to determine how many moles of acid remain and how many moles of conjugate base have been produced:

         C6H5-OH aq +     NaOHaq   C6H5-O- Na+aq  +H2Ol                           C6H5-OH(Mol) NaOH(mol) C6H5-O-(mol)
Initial (mol) 0.00258  0.0025 0.0
Change (mol) -0.0025 -0.0025 +0.0025
Final (mol) 0.00008 0 0.0025

The total sample volume is 21.5  mL + 10.0 mL = 31.5 mL or 0.0315 L, and the concentrations of the base and conjugate acid is

C6H5-OH= 0.000080 mol0.0315 L=0.00254 M

C6H5-O-= 0.0025 mol0.0315 L=0.07937 M

Applying the Henderson-Hasselbalch equation for the above buffer system formed as

pH=pKa+log[base][acid]

pH=9.89+log[0.07937  ][0.00254]

pH=11.39

7) Addition of 10.2 mL NaOH:

Moles of phenol:nphenol=Mphenol×Vphenol=0.120 M ×0.0215 L=0.00258 mol phenol

Moles of NaOH for 10.2 mL=0.0102 L volume:

nNaOH=MNaOH×VNaOH=0.250 M ×0.0102L = 0.00255 mol NaOH

We create a modified RICE table to determine how many moles of acid remain and how many moles of conjugate base have been produced:

         C6H5-OH aq +     NaOHaq   C6H5-O- Na+aq  +H2Ol                           C6H5-OH(Mol) NaOH(mol) C6H5-O-(mol)
Initial (mol) 0.00258  0.00255 0.0
Change (mol) -0.00255 -0.00255 +0.00255
Final (mol) 0.00003 0 0.00255

The total sample volume is 21.5  mL + 10.2 mL = 31.7 mL or 0.0317 L, and the concentrations of the base and conjugate acid is

C6H5-OH= 0.00003 mol0.0317 L=0.00095 M

C6H5-O-= 0.00255 mol0.0317 L=0.08044 M

Applying the Henderson-Hasselbalch equation for the above buffer system formed as

pH=pKa+log[base][acid]

pH=9.89+log[0.08044  ][0.00095]

pH=11.82

8) Addition of 10.6 mL NaOH:

The contribution of OH- ions from sodium pehnoxide is much smaller as compared to the contribution of OH- ions from NaOH.  The pH of the solution will be governed by solely NaOH.

Moles of NaOH for 10.6 mL=0.0106 L volume:

nNaOH=MNaOH×VNaOH=0.250 M ×0.0106L = 0.00265 mol NaOH

         C6H5-OH aq +     NaOHaq   C6H5-O- Na+aq  +H2Ol                           C6H5-OH(Mol) NaOH(mol) C6H5-O-(mol)
Initial (mol) 0.00258  0.00265  0.0
Change (mol) -0.00258 -0.00258  +0.00258 
Final (mol) 0 0.00007 0.00258 

Total volume of solution = 21.5+10.6=32.1 mL=0.0321L

Molarity of OH- is

OH-=0.00007 mol0.0321 L = 0.0021807 M

pOH= -logOH-= -log0.00218065=2.6614

pH=14-2.6614=11.34

9) Addition of 10.8 mL NaOH 10.8 mLNaOH

Moles of NaOH for 10.8 mL=0.0108 L volume:

nNaOH=MNaOH×VNaOH=0.250 M ×0.0108L = 0.00270 mol NaOH

         C6H5-OH aq +     NaOHaq   C6H5-O- Na+aq  +H2Ol                           C6H5-OH(Mol) NaOH(mol) C6H5-O-(mol)
Initial (mol) 0.00258  0.00270   0.0
Change (mol) -0.00258 -0.00258  +0.00258 
Final (mol) 0 0.00012 0.00258 

Total volume of solution = 21.5+10.8=32.3 mL=0.0323L

Molarity of OH- is

OH-=0.00012 mol0.0323 L = 0.003715 M

pOH= -logOH-= -log0.003715 =2.4300

pH=14-2.4300=11.57

10) Addition of 11 mL NaOH

Moles of NaOH for 11 mL=0.011 L volume:

nNaOH=MNaOH×VNaOH=0.250 M ×0.011L = 0.00275 mol NaOH

         C6H5-OH aq +     NaOHaq   C6H5-O- Na+aq  +H2Ol                           C6H5-OH(Mol) NaOH(mol) C6H5-O-(mol)
Initial (mol) 0.00258  0.00275   0.0
Change (mol) -0.00258 -0.00258  +0.00258 
Final (mol) 0 0.00017 0.00258 

Total volume of solution = 21.5+11=32.5 mL=0.0325L

Molarity of OH- is

OH-=0.00017 mol0.0325 L = 0.005231 M

pOH= -logOH-= -log 0.005231=2.2814

pH=14-2.2814=11.72

11) Addition of 12.5 mL NaOH

Moles of NaOH for 12.5 mL=0.0125 L volume:

nNaOH=MNaOH×VNaOH=0.250 M ×0.0125L = 0.003125 mol NaOH

         C6H5-OH aq +     NaOHaq   C6H5-O- Na+aq  +H2Ol                           C6H5-OH(Mol) NaOH(mol) C6H5-O-(mol)
Initial (mol) 0.00258  0.003125   0.0
Change (mol) -0.00258 -0.00258  +0.00258 
Final (mol) 0 0.000545 0.00258 

Total volume of solution = 21.5+12.5=34 mL=0.034L

Molarity of OH- is

OH-=0.000545 mol0.034 L = 0.016029 M

pOH= -logOH-= -log0.016029 =1.79508

pH=14-1.79508=12.20

12) Addition of 15 mL NaOH

Moles of NaOH for 15 mL=0.0150 L volume:

nNaOH=MNaOH×VNaOH=0.250 M ×0.0150L = 0.00375 mol NaOH

         C6H5-OH aq +     NaOHaq   C6H5-O- Na+aq  +H2Ol                           C6H5-OH(Mol) NaOH(mol) C6H5-O-(mol)
Initial (mol) 0.00258  0.00375 0.0
Change (mol) -0.00258 -0.00258  +0.00258 
Final (mol) 0 0.00117 0.00258 

Total volume of solution = 21.5+15=36.5 mL=0.0365L

Molarity of OH- is

OH-=0.00117 mol0.0365 L = 0.03205 M

pOH= -logOH-= -log0.03205=1.4941

pH=14-1.4941=12.51

13) Addition of 17.5 mL NaOH:

Moles of NaOH for 17.5 mL=0.0175 L volume:

nNaOH=MNaOH×VNaOH=0.250 M ×0.0175L = 0.004375 mol NaOH

         C6H5-OH aq +     NaOHaq   C6H5-O- Na+aq  +H2Ol                           C6H5-OH(Mol) NaOH(mol) C6H5-O-(mol)
Initial (mol) 0.00258  0.004375 0.0
Change (mol) -0.00258 -0.00258  +0.00258 
Final (mol) 0 0.001795 0.00258 

Total volume of solution = 21.5+17.5=39 mL=0.039 L

Molarity of OH- is

OH-=0.001795  mol0.039 L = 0.046026 M

pOH= -logOH-= -log0.046026=1.3370

pH=14-1.3370=12.66

14) Addition of 20  mLNaOH

Moles of NaOH for 20 mL=0.020L volume:

nNaOH=MNaOH×VNaOH=0.250 M ×0.020L = 0.005 mol NaOH

         C6H5-OH aq +     NaOHaq   C6H5-O- Na+aq  +H2Ol                           C6H5-OH(Mol) NaOH(mol) C6H5-O-(mol)
Initial (mol) 0.00258  0.005 0.0
Change (mol) -0.00258 -0.00258  +0.00258 
Final (mol) 0 0.00242  0.00258 

Total volume of solution = 21.5+20=41.5 mL=0.0415L

Molarity of OH- is

OH-=0.00242  mol0.0415 L = 0.058313 M

pOH= -logOH-= -log0.058313=1.2342

pH=14-1.2342=12.77

d) Graph of pH vs mL of NaOH added is

Chemistry: An Atoms-Focused Approach (Second Edition), Chapter 16, Problem 16.126QA , additional homework tip  2

The above curve is a plot of pH vs. mL of NaOH added.

The volume of NaOH at half equivalence point is 10.3 mL, so the half equivalence point is around 5.15 mL of NaOH. If we draw a vertical line from 5.15 mL to the curve, it meets at around  9.89. So, the pH at half equivalence point is  9.89. This value matches with the given pKa of 9.89. At the half equivalence point, the conjugate base formed and the acid present are equal in concentrations, so the Henderson-Hasselbalch equation reduces to pH=pKa.

So, at half equivalence point, the major species would be C6H5-ONa and C6H5-OH.

At the equivalence point, moles of acid initially present are equal to moles of added base. So, there will not be phenol or NaOH present at the equivalence point. The salt of phenol, that is, sodium phenoxide, C6H5-ONa, is a major species that is present at the equivalence point.

At the end of the titration, the only major species present will be NaOH.

Conclusion:

In the titration of a weak acid and strong base, the resultant salt formed is a basic salt. Hence, the pH at the equivalence point of the titration is greater than 7.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 16 Solutions

Chemistry: An Atoms-Focused Approach (Second Edition)

Ch. 16 - Prob. 16.11QACh. 16 - Prob. 16.12QACh. 16 - Prob. 16.13QACh. 16 - Prob. 16.14QACh. 16 - Prob. 16.15QACh. 16 - Prob. 16.16QACh. 16 - Prob. 16.17QACh. 16 - Prob. 16.18QACh. 16 - Prob. 16.19QACh. 16 - Prob. 16.20QACh. 16 - Prob. 16.21QACh. 16 - Prob. 16.22QACh. 16 - Prob. 16.23QACh. 16 - Prob. 16.24QACh. 16 - Prob. 16.25QACh. 16 - Prob. 16.26QACh. 16 - Prob. 16.27QACh. 16 - Prob. 16.28QACh. 16 - Prob. 16.29QACh. 16 - Prob. 16.30QACh. 16 - Prob. 16.31QACh. 16 - Prob. 16.32QACh. 16 - Prob. 16.33QACh. 16 - Prob. 16.34QACh. 16 - Prob. 16.35QACh. 16 - Prob. 16.36QACh. 16 - Prob. 16.37QACh. 16 - Prob. 16.38QACh. 16 - Prob. 16.39QACh. 16 - Prob. 16.40QACh. 16 - Prob. 16.41QACh. 16 - Prob. 16.42QACh. 16 - Prob. 16.43QACh. 16 - Prob. 16.44QACh. 16 - Prob. 16.45QACh. 16 - Prob. 16.46QACh. 16 - Prob. 16.47QACh. 16 - Prob. 16.48QACh. 16 - Prob. 16.49QACh. 16 - Prob. 16.50QACh. 16 - Prob. 16.51QACh. 16 - Prob. 16.52QACh. 16 - Prob. 16.53QACh. 16 - Prob. 16.54QACh. 16 - Prob. 16.55QACh. 16 - Prob. 16.56QACh. 16 - Prob. 16.57QACh. 16 - Prob. 16.58QACh. 16 - Prob. 16.59QACh. 16 - Prob. 16.60QACh. 16 - Prob. 16.61QACh. 16 - Prob. 16.62QACh. 16 - Prob. 16.63QACh. 16 - Prob. 16.64QACh. 16 - Prob. 16.65QACh. 16 - Prob. 16.66QACh. 16 - Prob. 16.67QACh. 16 - Prob. 16.68QACh. 16 - Prob. 16.69QACh. 16 - Prob. 16.70QACh. 16 - Prob. 16.71QACh. 16 - Prob. 16.72QACh. 16 - Prob. 16.73QACh. 16 - Prob. 16.74QACh. 16 - Prob. 16.75QACh. 16 - Prob. 16.76QACh. 16 - Prob. 16.77QACh. 16 - Prob. 16.78QACh. 16 - Prob. 16.79QACh. 16 - Prob. 16.80QACh. 16 - Prob. 16.81QACh. 16 - Prob. 16.82QACh. 16 - Prob. 16.83QACh. 16 - Prob. 16.84QACh. 16 - Prob. 16.85QACh. 16 - Prob. 16.86QACh. 16 - Prob. 16.87QACh. 16 - Prob. 16.88QACh. 16 - Prob. 16.89QACh. 16 - Prob. 16.90QACh. 16 - Prob. 16.91QACh. 16 - Prob. 16.92QACh. 16 - Prob. 16.93QACh. 16 - Prob. 16.94QACh. 16 - Prob. 16.95QACh. 16 - Prob. 16.96QACh. 16 - Prob. 16.97QACh. 16 - Prob. 16.98QACh. 16 - Prob. 16.99QACh. 16 - Prob. 16.100QACh. 16 - Prob. 16.101QACh. 16 - Prob. 16.102QACh. 16 - Prob. 16.103QACh. 16 - Prob. 16.104QACh. 16 - Prob. 16.105QACh. 16 - Prob. 16.106QACh. 16 - Prob. 16.107QACh. 16 - Prob. 16.108QACh. 16 - Prob. 16.109QACh. 16 - Prob. 16.110QACh. 16 - Prob. 16.111QACh. 16 - Prob. 16.112QACh. 16 - Prob. 16.113QACh. 16 - Prob. 16.114QACh. 16 - Prob. 16.115QACh. 16 - Prob. 16.116QACh. 16 - Prob. 16.117QACh. 16 - Prob. 16.118QACh. 16 - Prob. 16.119QACh. 16 - Prob. 16.120QACh. 16 - Prob. 16.121QACh. 16 - Prob. 16.122QACh. 16 - Prob. 16.123QACh. 16 - Prob. 16.124QACh. 16 - Prob. 16.125QACh. 16 - Prob. 16.126QACh. 16 - Prob. 16.127QACh. 16 - Prob. 16.128QACh. 16 - Prob. 16.129QACh. 16 - Prob. 16.130QACh. 16 - Prob. 16.131QACh. 16 - Prob. 16.132QACh. 16 - Prob. 16.133QACh. 16 - Prob. 16.134QACh. 16 - Prob. 16.135QACh. 16 - Prob. 16.136QA
Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY