In a 0.080 M NH 3 solution, what percent of the NH 3 is present as NH 4 + has to be calculated. Concept Information: Strong base and weak base: Strong base dissociates into its constituent ions fully. It produces more of hydroxide ions while dissolved in water. Weak bases partially dissociates into its constituent ions. According to Bronsted-Lowry, strong base is a good proton acceptor whereas weak base is a poor proton acceptor Since, the ionization of a weak base is incomplete, it is treated in the same way as the ionization of a weak acid. The ionization of a weak base B is given by the below equation. B (aq) +H 2 O (l) → HB + (aq) +OH - (aq) The equilibrium expression for the ionization of weak base B will be, K b = [ HB + ] [ OH - ] [ B ] Where, K b is base ionization constant, [ OH − ] is concentration of hydroxide ion [ HB + ] is concentration of conjugate acid [ B] is concentration of the base Percent ionization: A quantitative measure of the degree of ionization is percent ionization. For a weak, base HB percent ionization can be calculated as follows, percent ionization = [OH - ] [HB] × 100 % To Calculate: The percent of the NH 3 is present as NH 4 + in the given solution
In a 0.080 M NH 3 solution, what percent of the NH 3 is present as NH 4 + has to be calculated. Concept Information: Strong base and weak base: Strong base dissociates into its constituent ions fully. It produces more of hydroxide ions while dissolved in water. Weak bases partially dissociates into its constituent ions. According to Bronsted-Lowry, strong base is a good proton acceptor whereas weak base is a poor proton acceptor Since, the ionization of a weak base is incomplete, it is treated in the same way as the ionization of a weak acid. The ionization of a weak base B is given by the below equation. B (aq) +H 2 O (l) → HB + (aq) +OH - (aq) The equilibrium expression for the ionization of weak base B will be, K b = [ HB + ] [ OH - ] [ B ] Where, K b is base ionization constant, [ OH − ] is concentration of hydroxide ion [ HB + ] is concentration of conjugate acid [ B] is concentration of the base Percent ionization: A quantitative measure of the degree of ionization is percent ionization. For a weak, base HB percent ionization can be calculated as follows, percent ionization = [OH - ] [HB] × 100 % To Calculate: The percent of the NH 3 is present as NH 4 + in the given solution
Solution Summary: The author compares the ionization of strong base and weak base. Strong base is a good proton acceptor, while weak bases are poor.
In a 0.080 MNH3 solution, what percent of the
NH3 is present as
NH4+ has to be calculated.
Concept Information:
Strong base and weak base:
Strong base dissociates into its constituent ions fully. It produces more of hydroxide ions while dissolved in water. Weak bases partially dissociates into its constituent ions.
According to Bronsted-Lowry, strong base is a good proton acceptor whereas weak base is a poor proton acceptor
Since, the ionization of a weak base is incomplete, it is treated in the same way as the ionization of a weak acid.
The ionization of a weak base
B is given by the below equation.
B(aq)+H2O(l)→HB+(aq)+OH-(aq)
The equilibrium expression for the ionization of weak base
B will be,
Kb=[HB+][OH-][B]
Where,
Kb is base ionization constant,
[OH−] is concentration of hydroxide ion
[HB+] is concentration of conjugate acid
[B] is concentration of the base
Percent ionization:
A quantitative measure of the degree of ionization is percent ionization.
For a weak, base
HB percent ionization can be calculated as follows,
percentionization=[OH-][HB]×100%
To Calculate: The percent of the
NH3 is present as
NH4+ in the given solution
What are the IUPAC Names of all the compounds in the picture?
1) a) Give the dominant Intermolecular Force (IMF) in a sample of each of the following
compounds. Please show your work. (8) SF2, CH,OH, C₂H₂
b) Based on your answers given above, list the compounds in order of their Boiling Point
from low to high. (8)
19.78 Write the products of the following sequences of reactions. Refer to your reaction road-
maps to see how the combined reactions allow you to "navigate" between the different
functional groups. Note that you will need your old Chapters 6-11 and Chapters 15-18
roadmaps along with your new Chapter 19 roadmap for these.
(a)
1. BHS
2. H₂O₂
3. H₂CrO4
4. SOCI₂
(b)
1. Cl₂/hv
2. KOLBU
3. H₂O, catalytic H₂SO4
4. H₂CrO4
Reaction
Roadmap
An alkene 5. EtOH
6.0.5 Equiv. NaOEt/EtOH
7. Mild H₂O
An alkane
1.0
2. (CH3)₂S
3. H₂CrO
(d)
(c)
4. Excess EtOH, catalytic H₂SO
OH
4. Mild H₂O*
5.0.5 Equiv. NaOEt/EtOH
An alkene 6. Mild H₂O*
A carboxylic
acid
7. Mild H₂O*
1. SOC₁₂
2. EtOH
3.0.5 Equiv. NaOEt/E:OH
5.1.0 Equiv. NaOEt
6.
NH₂
(e)
1. 0.5 Equiv. NaOEt/EtOH
2. Mild H₂O*
Br
(f)
i
H
An aldehyde
1. Catalytic NaOE/EtOH
2. H₂O*, heat
3. (CH,CH₂)₂Culi
4. Mild H₂O*
5.1.0 Equiv. LDA
Br
An ester
4. NaOH, H₂O
5. Mild H₂O*
6. Heat
7.
MgBr
8. Mild H₂O*
7. Mild H₂O+
Chapter 16 Solutions
GEN COMBO CHEMISTRY: ATOMS FIRST; ALEKS 360 2S ACCESS CARD CHEMISTRY:ATOMS FIRST
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.