A mixture of hydrogen gas and chlorine gas remains unreacted until it is exposed to ultraviolet light from a burning magnesium strip. Then the following reaction occurs very rapidly:
Explain.
Want to see the full answer?
Check out a sample textbook solutionChapter 16 Solutions
EBK CHEMISTRY: AN ATOMS FIRST APPROACH
Additional Science Textbook Solutions
Biological Science (6th Edition)
Organic Chemistry
Biology: Life on Earth (11th Edition)
Brock Biology of Microorganisms (15th Edition)
Cosmic Perspective Fundamentals
Physical Universe
- Use the appropriate tables to calculate H for (a) the reaction between copper(II) oxide and carbon monoxide to give copper metal and carbon dioxide. (b) the decomposition of one mole of methyl alcohol (CH3OH) to methane and oxygen gases.arrow_forwardCalculate H when a 38-g sample of glucose, C6H12O6(s), burns in excess O2(g) to form CO2(g) and H2O() in a reaction at constant pressure and 298.15 K.arrow_forwardWhich molecule, F2, Cl2, Br2, or I2, has the weakest chemical bond?arrow_forward
- One of the components of polluted air is NO. It is formed in the high-temperature environment of internal combustion engines by the following reaction: N2(g)+O2(g)2NO(g)H=180KJ Why are high temperatures needed to convert N2 and O2 to NO?arrow_forwardSilicon forms a series of compounds analogous to the al-kanes and having the general formula SinH2n+2. The first of these compounds is silane, SiH4, which is used in the electronics industry to produce thin ultrapure silicon films. SiH4(g) is somewhat difficult to work with because it is py-ropboric at room temperature—meaning that it bursts into flame spontaneously when exposed to air. (a) Write an equation for the combustion of SiH4(g). (The reaction is analogous to hydrocarbon combustion, and SiO2 is a solid under standard conditions. Assume the water produced will be a gas.) (b) Use the data from Appendix E to calculate ? for this reaction. (c) Calculate G and show that the reaction is spontaneous at 25°C. (d) Compare G for this reaction to the combustion of methane. (See the previous problem.) Are the reactions in these two exercises enthalpy or entropy driven? Explain.arrow_forwardAn industrial process for manufacturing sulfuric acid, H2SO4, uses hydrogen sulfide, H2S, from the purification of natural gas. In the first step of this process, the hydrogen sulfide is burned to obtain sulfur dioxide, SO2. 2H2S(g)+3O2(g)2H2O(l)+2SO2(g);H=1124kJ The density of sulfur dioxide at 25C and 1.00 atm is 2.62 g/L, and the molar heat capacity is 30.2 J/(mol C). (a) How much heat would be evolved in producing 1.00 L of SO2 at 25C and 1.00 atm? (b) Suppose heat from this reaction is used to heat 1.00 L of the SO2 from 25C to 500C for its use in the next step of the process. What percentage of the heat evolved is required for this?arrow_forward
- Oxygen was first prepared by Joseph Priestley (1733-1804) by heating HgO. Use data in Appendix L to estimate the temperature required to decompose HgO(s) into Hg() and O2(g).arrow_forwardCalculate H for the reaction N2H4(l) + O2(g) N2(g) + 2H2O(l) given the following data: 2NH3(g)+3N2O(g)4N2(g)+3H2O(l)H=1010.kJN2O(g)+3H2(g)N2H4(l)+H2O(l)H=317kJ2NH3(g)+12O2(g)N2H4(l)+H2O(l)H=143kJH2(g)+12O2(g)H2O(l)H=286kJarrow_forwardWhich molecule, HF, HCl, HBr, or HI, has the strongest chemical bond?arrow_forward
- Consider the Haber process: N2(g)+3H2(g)2NH3(g);H=91.8kJ The density of ammonia at 25C and 1.00 atm is 0.696 g/L. The density of nitrogen, N2, is 1.145 g/L, and the molar heat capacity is 29.12 J/(mol C). (a) How much heat is evolved in the production of 1.00 L of ammonia at 25C and 1.00 atm? (b) What percentage of this heat is required to heat the nitrogen required for this reaction (0.500 L) from 25C to 400C, the temperature at which the Haber process is run?arrow_forwardClassify the following processes as exergonic or endergonic. Explain your answers. a.An automobile being pushed up a slight hill from point of view of the pushing b.Ice melting from point of view of the ice c.Ice melting from point of view of surrounding of the ice d.Steam condensing to liquid water from point of view of the steam e.Steam condensing to liquid water from point of view of surrounding of the steamarrow_forwardA gaseous hydrocarbon reacts completely with oxygen gas to form carbon dioxide and water vapour. Given the following data, determine Hf for the hydrocarbon: Hreaction=2044.5KJ/molhydrocarbonHf(CO2)=393.5KJ/molHf(H2O)=242KJ/mol Density of CO2 and H2O product mixture at 1.00 atm, 200.c = 0.751g/L. The density of the hydrocarbon is less than the density of Kr at the same conditions.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning