THERMODYNAMICS-SI ED. EBOOK >I<
9th Edition
ISBN: 9781307573022
Author: CENGEL
Publisher: MCG/CREATE
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 15.7, Problem 90P
Benzene gas (C6H6) at 1 atm and 77°F is burned during a steady-flow combustion process with 90 percent theoretical air that enters the combustion chamber at 77°F and 1 atm. All the hydrogen in the fuel burns to H2O, but part of the carbon burns to CO. Heat is lost to the surroundings at 77°F, and the products leave the combustion chamber at 1 atm and 1900 R. Determine (a) the heat transfer from the combustion chamber and (b) the exergy destruction.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Liquid propane (C3H8) enters a combustion chamber at 25°C at a rate of
0.07 kg/min where it is mixed and burned with 40 percent excess air that
enters the combustion chamber at 7°C. An analysis of the combustion
gases reveals that all the hydrogen in the fuel burns to H,0 but only 75
percent of the carbon burns to CO, with the remaining 25 percent forming
CO. determine (a) the balanced equation for actual combustion process
and (b) the mass flow rate of air.
Octane gas (C8H18) and atmospheric air are supplied to a combustion chamber at 25°C at the stoichiometric air/fuel
ratio. The combustion takes place adiabatically under steady-flow condition. The change in velocity and the work transfer
can be assumed negligible. The Enthalpy of Combustion of octane gas at 25°C is – 5,116,180 kJ/kmol (when H2O in the
combustion products is in vapor phase). Determine with aid of the Table on Page 26, the final temperature of the
combustion products.
Liquid propane (C 3 H 8 ) enters a combustion chamber at 25 °C at a rate of 0.05
kg/min where it is mixed and burned with theoretical air that enters the
combustion chamber at 7 °C. an analysis of combustion gases reveals that all the
hydrogen in the fuel burns to H 2 O but only but only 90% of carbon burn to CO 2
with the remaining 10% forming Co if the exit temperature of combustion gases
is 1500 K (a) the mass flow rate of air and (b) the rate of heat transfer from the
combustion chamber
Chapter 15 Solutions
THERMODYNAMICS-SI ED. EBOOK >I<
Ch. 15.7 - What are the approximate chemical compositions of...Ch. 15.7 - How does the presence of N2 in air affect the...Ch. 15.7 - Prob. 3PCh. 15.7 - Prob. 4PCh. 15.7 - Is the airfuel ratio expressed on a mole basis...Ch. 15.7 - How does the presence of moisture in air affect...Ch. 15.7 - Prob. 7PCh. 15.7 - Prob. 8PCh. 15.7 - Prob. 9PCh. 15.7 - Are complete combustion and theoretical combustion...
Ch. 15.7 - What does 100 percent theoretical air represent?Ch. 15.7 - Consider a fuel that is burned with (a) 130...Ch. 15.7 - What are the causes of incomplete combustion?Ch. 15.7 - Which is more likely to be found in the products...Ch. 15.7 - Methane (CH4) is burned with the stoichiometric...Ch. 15.7 - Prob. 16PCh. 15.7 - n-Butane fuel (C4H10) is burned with the...Ch. 15.7 - Prob. 18PCh. 15.7 - Propane (C3H8) is burned with 75 percent excess...Ch. 15.7 - Propane fuel (C3H8) is burned with 30 percent...Ch. 15.7 - In a combustion chamber, ethane (C2H6) is burned...Ch. 15.7 - Prob. 22PCh. 15.7 - Prob. 23PCh. 15.7 - Ethane (C2H6) is burned with 20 percent excess air...Ch. 15.7 - Octane (C8H18) is burned with 250 percent...Ch. 15.7 - Prob. 26PCh. 15.7 - A fuel mixture of 60 percent by mass methane (CH4)...Ch. 15.7 - Prob. 28PCh. 15.7 - A certain natural gas has the following volumetric...Ch. 15.7 - Prob. 30PCh. 15.7 - A gaseous fuel with a volumetric analysis of 45...Ch. 15.7 - Prob. 33PCh. 15.7 - The fuel mixer in a natural gas burner mixes...Ch. 15.7 - Prob. 35PCh. 15.7 - Prob. 36PCh. 15.7 - Determine the fuelair ratio when coal from...Ch. 15.7 - Prob. 38PCh. 15.7 - Prob. 39PCh. 15.7 - Prob. 40PCh. 15.7 - Prob. 41PCh. 15.7 - When are the enthalpy of formation and the...Ch. 15.7 - Prob. 43PCh. 15.7 - Prob. 44PCh. 15.7 - Prob. 45PCh. 15.7 - Prob. 46PCh. 15.7 - Prob. 48PCh. 15.7 - Repeat Prob. 1546 for liquid octane (C8H18).Ch. 15.7 - Ethane (C2H6) is burned at atmospheric pressure...Ch. 15.7 - Reconsider Prob. 1550. What minimum pressure of...Ch. 15.7 - Calculate the HHV and LHV of gaseous n-octane fuel...Ch. 15.7 - Prob. 53PCh. 15.7 - Consider a complete combustion process during...Ch. 15.7 - Prob. 56PCh. 15.7 - Prob. 57PCh. 15.7 - Prob. 58PCh. 15.7 - Propane fuel (C3H8) is burned with an airfuel...Ch. 15.7 - Prob. 60PCh. 15.7 - Prob. 61PCh. 15.7 - Prob. 62PCh. 15.7 - Octane gas (C8H18) at 25C is burned steadily with...Ch. 15.7 - Liquid ethyl alcohol [C2H5OH(l)] at 25C is burned...Ch. 15.7 - Prob. 66PCh. 15.7 - A gaseous fuel mixture that is 40 percent propane...Ch. 15.7 - A constant-volume tank contains a mixture of 120 g...Ch. 15.7 - Prob. 70PCh. 15.7 - Prob. 71PCh. 15.7 - Prob. 72PCh. 15.7 - A fuel is completely burned first with the...Ch. 15.7 - Prob. 74PCh. 15.7 - Prob. 75PCh. 15.7 - What is the adiabatic flame temperature of methane...Ch. 15.7 - Octane gas (C8H18) at 25C is burned steadily with...Ch. 15.7 - Acetylene gas (C2H2) at 25C is burned during a...Ch. 15.7 - Ethyl alcohol [C2H5OH(g)] is burned with 200...Ch. 15.7 - Prob. 81PCh. 15.7 - Prob. 82PCh. 15.7 - Reconsider Prob. 1582. The combustion products are...Ch. 15.7 - Express the increase of entropy principle for...Ch. 15.7 - Prob. 85PCh. 15.7 - What does the Gibbs function of formation gf of a...Ch. 15.7 - Liquid octane (C8H18) enters a steady-flow...Ch. 15.7 - Prob. 88PCh. 15.7 - Reconsider Prob. 1588. The automobile engine is to...Ch. 15.7 - Benzene gas (C6H6) at 1 atm and 77F is burned...Ch. 15.7 - Prob. 91PCh. 15.7 - n-Octane [C8H18(l)] is burned in the...Ch. 15.7 - A steady-flow combustion chamber is supplied with...Ch. 15.7 - Prob. 94RPCh. 15.7 - Prob. 95RPCh. 15.7 - Prob. 96RPCh. 15.7 - Prob. 97RPCh. 15.7 - Prob. 98RPCh. 15.7 - Prob. 99RPCh. 15.7 - n-Butane (C4H10) is burned with the stoichiometric...Ch. 15.7 - A gaseous fuel mixture of 60 percent propane...Ch. 15.7 - Calculate the higher and lower heating values of...Ch. 15.7 - Prob. 103RPCh. 15.7 - Methane gas (CH4) at 25C is burned steadily with...Ch. 15.7 - A 6-m3 rigid tank initially contains a mixture of...Ch. 15.7 - Propane gas (C3H8) enters a steady-flow combustion...Ch. 15.7 - Determine the highest possible temperature that...Ch. 15.7 - Liquid propane [C3H8(l)] enters a combustion...Ch. 15.7 - Prob. 109RPCh. 15.7 - Prob. 110RPCh. 15.7 - Prob. 111RPCh. 15.7 - A steam boiler heats liquid water at 200C to...Ch. 15.7 - Repeat Prob. 15112 using a coal from Utah that has...Ch. 15.7 - Liquid octane (C8H18) enters a steady-flow...Ch. 15.7 - Prob. 115RPCh. 15.7 - Consider the combustion of a mixture of an...Ch. 15.7 - Prob. 117RPCh. 15.7 - A fuel is burned steadily in a combustion chamber....Ch. 15.7 - A fuel is burned with 70 percent theoretical air....Ch. 15.7 - Prob. 126FEPCh. 15.7 - One kmol of methane (CH4) is burned with an...Ch. 15.7 - The higher heating value of a hydrocarbon fuel...Ch. 15.7 - Acetylene gas (C2H2) is burned completely during a...Ch. 15.7 - An equimolar mixture of carbon dioxide and water...Ch. 15.7 - A fuel is burned during a steady-flow combustion...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Q1. Propane (C3H8) gas enters a steady-flow adiabatic combustion chamber at 25°℃ and 1 atm. It is burned with 300 percent excess air that also enters at 25°C and 1 atm. Assuming complete combustion, determine (a) the temperature of the products, (b) the entropy generation, and (c) the reversible work and exergy destruction. Assume that To = 298 K and the products leave the combustion chamber at 1 atm pressure.arrow_forwardDetermine the enthalpy of combustion (in kJ) when fully-consuming a 23-L tank of ethane. The ethane inside the tank is pressurized to 8 atm at 30 ⁰C.arrow_forwardA 10% rich mixture of Heptane (C,H16) and air is initially at a pressure of 1 bar and temperature of 100°C, and is polytropically compressed through a volumetric ratio of 6 to 1. It is ignited and adiabatic combustion proceeds at constant volume. The maximum temperature reached is 2627°C and at this temperature the equilibrium constants are PH₂OPCO = 6.72 PCO₂PH₂ P²coPo₂ = 0.054 Pco2po ' = 1bar is a reference pressure for the equilibrium constants. if the constituents of the gas are CO2, CO, H₂O, H₂, O2 and N₂: (a) Calcuate the reaction equation without dissociation (b) Calculate the equilibrium product composition. (c) Verify that approximately 30.2 % of the carbon has burned incompletely. Notes: the number of moles is not conserved in this reaction! You may use any method to solve the (nonlinear) equations you derive.arrow_forward
- An unknown amount of propane Fuel having a chemical formula C3H8 is burned with an unknown amount of air in a four-cylinder engine. The analysis of the engine exhaust gives the resulting reaction: 5.5 moles CO2, 18.87 moles H20, unknown moles 02, unknown moles N2, 8.8 moles CO and 0.2 moles H2: The number of moles of the products is: Select one: O a. 201.2 O b. 97.2 O c. 121.9 O d. 145.9 O e. 98.7arrow_forwardCalculate the enthalpy of combustion of propane C3H8 at 25 oC in both kJ/kg and kJ/mole under the following conditions:- 1- gaseous propane with H2O liquid in the products. 2- gaseous propane with H2O vapor in the products 3- liquid propane with H2O liquid in the products 4- liquid propane with H2O vapor in the products note: the enthalpy of evaporation of propane at 25 oC is 425 kJ/kgarrow_forwardA gaseous fuel with 80% butane, 15% nitrogen and 5% oxygen (on a mole basis) is burned to completion with 120 percent theoretical air that enters the combustion chamber at 30°C and 100 kPa. Determine the volume flow rate of air required to burn fuel at a rate of 2 kg/min.arrow_forward
- n-Octane gas (C8H18) is burned with 80% excess air in a constant pressure burner. The air and fuel enter this burner steadily at standard conditions and the products of combustion leave at 217°C. Calculate the heat transfer, in kJ/kg fuel, during this combustion. C8H18 25°C 80% excess air 25°C Qout Combustion chamber P = 1 atm Products 217°Carrow_forwardQ1) A constant volume tank contain 1 mole ofC7H14 and 12 mole of O2 gas at a temperature of 25 °C and 1 bar. The contents of the tank is ignited and C7H14is burned completely and final products temperature is found to be 1700 K. Determine the heat transfer during this process. ( take dalta Ho = -47800 kJ/kg).arrow_forwardLiquid propane (C3H8) enters a combustion chamber at 25°C at a rate of 0.05 kg/min where it is mixed and burned with 50 percent excess air that enters the combustion chamber at 7°C. An analysis of the combustion gases reveals that all the hydrogen in the fuel burns to H2O but only 90 percent of the carbon burns to CO2, with the remaining 10 percent forming CO. If the exit temperature of the combustion gases is 1500 K, determine 1-The balanced chemical equation for the actual process 2-Air- Fuel ratio 3-The mass flow rate of airarrow_forward
- For complete combustion of octane (C3H,3) with 100% dry air. (a) write the balance mol equation (b) calculate the specific heat, enthalpy and internal energy of dry flue gas at 373 K. From Table A-1 specific heats in kJ/kg K: for CO2, Cp = 0.8452 ; for N2, Cp = 1.0414arrow_forward1. Determine the theoretical weight of air needed in kgair/kgfuel if the fuel used has 40.3°API. 2. A petrol has the following analysis: 85.5% carbon, 14.4% hydrogen, and 0.10% sulfur. Calculate the volume of air in m³ at 1.0 bar and 15°C required for perfect combustion of 1 kg of the fuel. 3. A typical industrial fuel oil, C16H32, is burned with 20% excess air. Calculate the actual weight of air in kgair/sec needed for 3.2 kg per sec of fuel. 4. A logging firm in Isabela operates a Diesel Electric plant to supply its electric energy requirements. During a 24-hour period, the plant consumed 350 gallons of fuel at 80 deg.F and produces 2700 kW-hrs. Industrial fuel used is 30°API and was purchased at P3.00 per liter at 60 deg.F. Determine the overall efficiency of the plant. 5. A diesel engine consumed 945 liters of fuel per day at 30°C. If the fuel was purchased at 15.5°C and 30°API at Php5.00/liter, determine the cost of fuel to operate the engine per dayarrow_forwardLiquid octane is burned completely with 75% excess air. Determine the air-fuel ratio for this combustion process.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Extent of Reaction; Author: LearnChemE;https://www.youtube.com/watch?v=__stMf3OLP4;License: Standard Youtube License