Repeat Prob. 15–112 using a coal from Utah that has an ultimate analysis (by mass) of 61.40 percent C, 5.79 percent H2, 25.31 percent O2, 1.09 percent N2, 1.41 percent S, and 5.00 percent ash (noncombustibles).
(a)

The amount of steam generated per unit of fuel mass burned.
Answer to Problem 113RP
The amount of steam generated per unit of fuel mass burned is
Explanation of Solution
Express the number of moles of carbon.
Here, molar mass of carbon is
Express the number of moles of hydrogen.
Here, molar mass of hydrogen is
Express the number of moles of oxygen.
Here, molar mass of oxygen is
Express the number of moles of nitrogen.
Here, molar mass of nitrogen is
Express the number of moles of sulphur.
Here, molar mass of sulphur is
Express the total number of moles.
Express the mole fraction of carbon.
Express the mole fraction of hydrogen.
Express the mole fraction of oxygen.
Express the mole fraction of nitrogen.
Express the mole fraction of sulphur.
Write the energy balance equation using steady-flow equation.
Here, the total energy entering the system is
Substitute
Here, the enthalpy of formation for product is
Write the formula for the amount of steam generated per unit mass of fuel burned.
Here, the mass of the steam is
Conclusion:
Refer Table A-1, “molar mass, gas constant, and the critical point properties”, and write the molar masses.
Here, molar mass of air is
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Express the combustion equation.
Here, carbon dioxide, water, sulfur dioxide, nitrogen and oxygen is
Perform the species balancing according to the oxygen balance:
Oxygen balance:
Substitute
Calculate the apparent molecular weight of the cool.
Refer Appendix Table A-18, A-19, A-20, and A-23, obtain the enthalpy of formation, at 298 K , and 500 K for
Substance | |||
0 | 8682 | 14,770 | |
0 | 8669 | 14,581 | |
-241820 | 9904 | 16,828 | |
-393,520 | 9364 | 17,678 |
Substitute the value of substance in Equation (XIII).
Calculate the heat loss per unit mass of the fuel.
Substitute
Thus, the amount of steam generated per unit of fuel mass burned is
(b)

The change in the exergy of the combustion steams, in
Answer to Problem 113RP
The change in the exergy of the combustion steams, in
Explanation of Solution
Write the expression for entropy generation during this process.
Write the combustion equation of Equation (VI)
Here, the entropy of the product is
Determine the entropy at the partial pressure of the components.
Here, the partial pressure is
Write the expression for exergy change of the combustion steam is equal to the exergy destruction.
Here, the thermodynamic temperature of the surrounding is
Conclusion:
Refer Equation (XIX) for reactant and product to calculation the entropy in tabular form as:
For reactant entropy,
Substance |
(T, 1 atm) | ||||
0.5758 | 0.5758 | 5.74 | -4.589 | 5.95 | |
0.3258 | 0.3258 | 130.68 | -9.324 | 45.61 | |
0.0890 | 0.0890 | 205.04 | -20.11 | 20.04 | |
0.00438 | 0.00438 | 191.61 | -45.15 | 1.04 | |
0.9821 | 0.21 | 205.04 | -12.98 | 214.12 | |
3.693 | 0.79 | 191.61 | -1.960 | 714.85 | |
For product entropy,
Substance |
(T, 1 atm) | ||||
0.5758 | 0.1170 | 234.814 | -17.84 | 145.48 | |
0.3258 | 0.0662 | 206.413 | -22.57 | 74.60 | |
0.3274 | 0.0665 | 220.589 | -22.54 | 79.60 | |
3.693 | 0.7503 | 206.630 | -2.388 | 771.90 | |
Substitute
Substitute
Calculate the exergy destruction per unit mass of the basis.
Thus, the change in the exergy of the combustion steams, in
(c)

The exergy change of the steam, in
Answer to Problem 113RP
The exergy change of the steam, in
Explanation of Solution
Determine the exergy change of the steam stream.
Here, the final enthalpy is
Conclusion:
Substitute
Thus, the exergy change of the steam, in
(d)

The lost work potential, in
Answer to Problem 113RP
The lost work potential, in
Explanation of Solution
Determine the lost work potential is the negative of the net exergy change both streams.
Conclusion:
Substitute
Thus, the lost work potential, in
Want to see more full solutions like this?
Chapter 15 Solutions
THERMODYNAMICS-SI ED. EBOOK >I<
- The gears shown in the figure have a diametral pitch of 2 teeth per inch and a 20° pressure angle. The pinion rotates at 1800 rev/min clockwise and transmits 200 hp through the idler pair to gear 5 on shaft c. What forces do gears 3 and 4 transmit to the idler shaft? TS I y 18T 32T This a 12 x 18T C 48T 5arrow_forwardQuestion 1. Draw 3 teeth for the following pinion and gear respectively. The teeth should be drawn near the pressure line so that the teeth from the pinion should mesh those of the gear. Drawing scale (1:1). Either a precise hand drawing or CAD drawing is acceptable. Draw all the trajectories of the involute lines and the circles. Specification: 18tooth pinion and 30tooth gear. Diameter pitch=P=6 teeth /inch. Pressure angle:20°, 1/P for addendum (a) and 1.25/P for dedendum (b). For fillet, c=b-a.arrow_forward5. The figure shows a gear train. There is no friction at the bearings except for the gear tooth forces. The material of the milled gears is steel having a Brinell hardness of 170. The input shaft speed (n2) is 800 rpm. The face width and the contact angle for all gears are 1 in and 20° respectively. In this gear set, the endurance limit (Se) is 15 kpsi and nd (design factor) is 2. (a) Find the revolution speed of gear 5. (b) Determine whether each gear satisfies the design factor of 2.0 for bending fatigue. (c) Determine whether each gear satisfies the design factor of 2.0 for surface fatigue (contact stress). (d) According to the computation results of the questions (b) and (c), explain the possible failure mechanisms for each gear. N4=28 800rpm N₁=43 N5=34 N₂=14 P(diameteral pitch)=8 for all gears Coupled to 2.5hp motorarrow_forward
- 1. The rotating steel shaft is simply supported by bearings at points of B and C, and is driven by a spur gear at D, which has a 6-in pitch diameter. The force F from the drive gear acts at a pressure angle of 20°. The shaft transmits a torque to point A of TA =3000 lbĘ in. The shaft is machined from steel with Sy=60kpsi and Sut=80 kpsi. (1) Draw a shear force diagram and a bending moment diagram by F. According to your analysis, where is the point of interest to evaluate the safety factor among A, B, C, and D? Describe the reason. (Hint: To find F, the torque Tд is generated by the tangential force of F (i.e. Ftangential-Fcos20°) When n=2.5, K=1.8, and K₁ =1.3, determine the diameter of the shaft based on (2) static analysis using DE theory (note that fatigue stress concentration factors need to be used for this question because the loading condition is fatigue) and (3) a fatigue analysis using modified Goodman. Note) A standard diameter is not required for the questions. 10 in Darrow_forward3 N2=28 P(diametral pitch)=8 for all gears Coupled to 25 hp motor N3=34 Full depth spur gears with pressure angle=20° N₂=2000 rpm (1) Compute the circular pitch, the center-to-center distance, and base circle radii. (2) Draw the free body diagram of gear 3 and show all the forces and the torque. (3) In mounting gears, the center-to-center distance was reduced by 0.1 inch. Calculate the new values of center-to-center distance, pressure angle, base circle radii, and pitch circle diameters. (4)What is the new tangential and radial forces for gear 3? (5) Under the new center to center distance, is the contact ratio (mc) increasing or decreasing?arrow_forward2. A flat belt drive consists of two 4-ft diameter cast-iron pulleys spaced 16 ft apart. A power of 60 hp is transmitted by a pulley whose speed is 380 rev/min. Use a service factor (Ks) pf 1.1 and a design factor 1.0. The width of the polyamide A-3 belt is 6 in. Use CD=1. Answer the following questions. (1) What is the total length of the belt according to the given geometry? (2) Find the centrifugal force (Fc) applied to the belt. (3) What is the transmitted torque through the pulley system given 60hp? (4) Using the allowable tension, find the force (F₁) on the tight side. What is the tension at the loose side (F2) and the initial tension (F.)? (5) Using the forces, estimate the developed friction coefficient (f) (6) Based on the forces and the given rotational speed, rate the pulley set. In other words, what is the horse power that can be transmitted by the pulley system? (7) To reduce the applied tension on the tight side, the friction coefficient is increased to 0.75. Find out the…arrow_forward
- The tooth numbers for the gear train illustrated are N₂ = 24, N3 = 18, №4 = 30, №6 = 36, and N₁ = 54. Gear 7 is fixed. If shaft b is turned through 5 revolutions, how many turns will shaft a make? a 5 [6] barrow_forwardCE-112 please solve this problem step by step and give me the correct answerarrow_forwardCE-112 please solve this problem step by step and give me the correct answerarrow_forward
- CE-112 solve this problem step by step and give me the correct answer pleasearrow_forwardPlease do not use any AI tools to solve this question. I need a fully manual, step-by-step solution with clear explanations, as if it were done by a human tutor. No AI-generated responses, please.arrow_forwardPlease do not use any AI tools to solve this question. I need a fully manual, step-by-step solution with clear explanations, as if it were done by a human tutor. No AI-generated responses, please.arrow_forward
- Refrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage LearningPrinciples of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage LearningWelding: Principles and Applications (MindTap Cou...Mechanical EngineeringISBN:9781305494695Author:Larry JeffusPublisher:Cengage Learning
- Precision Machining Technology (MindTap Course Li...Mechanical EngineeringISBN:9781285444543Author:Peter J. Hoffman, Eric S. Hopewell, Brian JanesPublisher:Cengage LearningAutomotive Technology: A Systems Approach (MindTa...Mechanical EngineeringISBN:9781133612315Author:Jack Erjavec, Rob ThompsonPublisher:Cengage Learning




