A steam boiler heats liquid water at 200°C to superheated steam at 4 MPa and 400°C. Methane fuel (CH4) is burned at atmospheric pressure with 50 percent excess air. The fuel and air enter the boiler at 25°C and the products of combustion leave at 227°C. Calculate (a) the amount of steam generated per unit of fuel mass burned, (b) the change in the exergy of the combustion streams, in kJ/kg fuel, (c) the change in the exergy of the steam stream, in kJ/kg steam, and (d) the lost work potential, in kJ/kg fuel. Take T0 = 25°C.
(a)
The amount of steam generated per unit of fuel mass burned.
Answer to Problem 112RP
The amount of steam generated per unit of fuel mass burned is
Explanation of Solution
Write the energy balance equation using steady-flow equation.
Here, the total energy entering the system is
Substitute
Here, the enthalpy of formation for product is
Calculate the molar mass of the
Here, the number of carbon atoms is
Determine the amount of steam generated per unit mass of fuel burned from an energy balance.
Here, the mass of the steam is
Conclusion:
Perform unit conversion of temperature at state 1 from degree Celsius to Kelvin.
For air temperature enter in the machine,
For air temperature exit from the machine,
Write the combustion equation of 1 kmol for
Here, liquid methane is
Refer Appendix Table A-18, A-19, A-20, and A-23, obtain the enthalpy of formation, at 298 K , and 500 K for
Substance | |||
-74,850 | --- | --- | |
0 | 8682 | 14,770 | |
0 | 8669 | 14,581 | |
-241820 | 9904 | 16,828 | |
-393,520 | 9364 | 17,678 |
Refer Equation (V), and write the number of moles of reactants.
Here, number of moles of reactant methane, oxygen and nitrogen is
Refer Equation (V), and write the number of moles of products.
Here, number of moles of product carbon dioxide, water, oxygen and nitrogen is
Substitute the value of substance in Equation (II).
Therefore the heat transfer for
Substitute 1 for
Calculate the heat loss per unit mass of the fuel.
From the table A-4, “Saturated water-Temperature” obtain the value of the saturated enthalpy and entropy of liquid at the
From the table A-6, “Superheated water” obtain the value of the enthalpy and entropy at the
Substitute
Thus, the amount of steam generated per unit of fuel mass burned is
(b)
The change in the exergy of the combustion steams, in
Answer to Problem 112RP
The change in the exergy of the combustion steams, in
Explanation of Solution
Write the expression for entropy generation during this process.
Write the combustion equation of Equation (VI)
Here, the entropy of the product is
Determine the entropy at the partial pressure of the components.
Here, the partial pressure is
Write the expression for exergy change of the combustion steam is equal to the exergy destruction.
Here, the thermodynamic temperature of the surrounding is
Conclusion:
Refer Equation (VIII) for reactant and product to calculation the entropy in tabular form as:
For reactant entropy,
Substance |
(T, 1 atm) | ||||
1 | --- | 186.16 | --- | 186.16 | |
3 | 0.21 | 205.04 | -12.98 | 654.06 | |
11.28 | 0.79 | 191.61 | -1.960 | 2183.47 | |
For product entropy,
Substance |
(T, 1 atm) | ||||
1 | 0.0654 | 234.814 | -22.67 | 257.48 | |
2 | 0.1309 | 206.413 | -16.91 | 446.65 | |
1 | 0.0654 | 220.589 | -22.67 | 243.26 | |
11.28 | 0.7382 | 206.630 | -2.524 | 2359.26 | |
Substitute
Substitute
Calculate the exergy destruction per unit mass of the basis.
Thus, the change in the exergy of the combustion steams, in
(c)
The exergy change of the steam, in
Answer to Problem 112RP
The exergy change of the steam, in
Explanation of Solution
Determine the exergy change of the steam stream.
Here, the final enthalpy is
Conclusion:
Substitute
Thus, the exergy change of the steam, in
(d)
The lost work potential, in
Answer to Problem 112RP
The lost work potential, in
Explanation of Solution
Determine the lost work potential is the negative of the net exergy change both streams.
Conclusion:
Substitute
Thus, the lost work potential, in
Want to see more full solutions like this?
Chapter 15 Solutions
CENGEL'S 9TH EDITION OF THERMODYNAMICS:
- The hose supplying the cylinder operating the bucket of a large excavator has fluid at 1000 psi flowing at 5 gpm. What is theavailable power in the line?arrow_forwardQ For the following plan of building foundation, Determine immediate settlement at points (A) and (B) knowing that: E,-25MPa, u=0.3, Depth of foundation (D) =1m, Depth of layer below base level of foundation (H)=10m. 3m 2m 100kPa A 2m 150kPa 5m 200kPa Barrow_forwardGiven the following data for crack rocker mechanism. If θ2 = 4π/3 and ω2 = 1 rad/s, Determine all possible values of ω4 and ω3 analytically. The lengths of links are a = 2, b = 8, c = 7 and d = 9 in cm.arrow_forward
- Q6] (20 Marks) Select the most suitable choice for the following statements: modo digi -1A 10 af5 1 -The copper-based alloy which is responded to age hardening is a) copper-nickel b) aluminum bronze c) copper - beryllium d) brass besincaluy 2- Highly elastic polymers may experience elongations to greater than.... b) 500% bromsia-P c) 1000%. d) 1200% 15m or -2 a)100% 3- The cooling rate of quenching the steel in saltwater will be ......the cooling rate of quenching ir c) faster than sold) none of them a) slower than 4- Adding of a) Cr b) the same as ...... Will lead to stabilize the b) Mo 10 austenite in steel. c) Nimble avolls 1d) Sized loloin nl 5- The adjacent linear chains of crosslinked polymers are joined one to another at various positic DIR... by.........bonds c) covalent noisqo gd) ionic lg 120M 6- For the ceramic with coordination number 6 the cation to anion radius ratio will be a) Van der Waals a) 0.155-0.225 a) linear b) hydrogen (b) 0.225-0.414 c) 0.414 0.732 ..polymers.…arrow_forwardExamine Notes: Attempt Six Questions Only. rever necessa , Q1] (20 Marks) Answer with true (T) or false (F), corrects the wrong phrases, and gives sho reasons for correct and corrected statements: 1- High chromium irons are basically grey cast irons alloyed with 12 to 30 % Cr. yous board-19qgo orT-1 2- The drawbacks of Al- Li alloys are their high young modulus and high density.&M 0) (0 3- Vulcanized rubbers are classified under thermoplastic polymers. 4- Diamond is a stable carbon polymorph at room temperature and atmospheric pressure. ( 5- The metallic ions of ceramic are called anions, and they are positively charged. yldgiH-S 69001(6arrow_forwardH.W 5.4 Calculate the load that will make point A move to the left by 6mm, E-228GPa. The diameters of the rods are as shown in fig. below. 2P- PA 50mm B 200mm 2P 0.9m 1.3marrow_forward
- d₁ = = Two solid cylindrical road AB and BC are welded together at B and loaded as shown. Knowing that 30mm (for AB) and d₂ 50mm (for BC), find the average normal stress in each road and the total deformation of road AB and BC. E=220GPa H.W 5.3 60kN A For the previous example calculate the value of force P so that the point A will not move, and what is the total length of road AB at that force? P◄ A 125kN 125kN 0.9m 125kN 125kN 0.9m B B 1.3m 1.3marrow_forwardClass: B Calculate the load that will make point A move to the left by 6mm, E-228GPa The cross sections of the rods are as shown in fig. below. 183 P- Solution 1.418mm 200mm 80mm 3P- 18.3 A 080mm B 200mm 3P- 0.9m إعدادات العرض 1.3m 4.061mmarrow_forwardH.W6 Determine the largest weight W that can be supported by two wires shown in Fig. P109. The stress in either wire is not to exceed 30 ksi. The cross- sectional areas of wires AB and AC are 0.4 in2 and 0.5 in2, respectively. 50° 30° Warrow_forward
- Find equation of motion and natural frequency for the system shown in fig. by energy method. H.W2// For the system Fig below find 1-F.B.D 2-Eq.of motion 8wn 4-0 (5) m. Jo marrow_forward2. Read the following Vernier caliper measurements. (The scales have been enlarged for easier reading.) The Vernier caliper is calibrated in metric units. (a) 0 1 2 3 4 5 سلسلسله (b) 1 2 3 4 5 6 سلسل (c) 1 23456 (d) 1 2 3 4 5 6 سلسلسarrow_forwardExplain why on the interval 0<x<1000 mm and 1000<x<2000mm, Mt is equal to positive 160 Nm, but at x= 0mm and x=1000mm Mt is equal to -160 Nm (negative value!). What is the reason for the sign change of Mt?arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY