In Prob. 15.201, the speed of point B is known to be constant. For the position shown, determine (a) the angular acceleration of the guide arm, (b) the acceleration of point C.
15.201 Several rods are brazed together to form the robotic guide arm shown that is attached to a ball-and-socket joint at O. Rod OA slides in a straight inclined slot, while rod OB slides in a slot parallel to the z axis. Knowing that at the instant shown vB = (9 in./s)k, determine (a) the angular velocity of the guide arm, (b) the velocity of point A, (c) the velocity of point C.
Fig. P15.201
(a)
The angular acceleration of the guide arm.
Answer to Problem 15.202P
The angular acceleration of the guide arm is
Explanation of Solution
Given information:
The velocity
Calculation:
Sketch the Free Body Diagram of the robotic guide arm as shown in Figure 1.
Refer to Figure 1.
The velocity at D along the x axis is
The velocity at A along the x axis is
Calculate the position vector
The position of A.
The position of B.
The position of C.
Consider the angular velocity
Consider the velocity at A
Calculate the angular velocity of each plane using the relation of
Substitute
Resolving i, j and k components.
For i component.
For k component.
Calculate the angular velocity of each plane using the relation of
Substitute
Substitute
Resolving i, j and k components.
For i component.
For j component.
For k component.
Calculate the velocity at A
Substitute
Calculate the angular velocity along y direction
Substitute
Calculate the angular velocity
Substitute
Calculate the velocity of point A
Substitute
Calculate the velocity of point C
Substitute
Consider the angular acceleration
Consider the acceleration at A
Consider the acceleration at B
Calculate the angular acceleration at B of each plane using the relation of
Substitute
Resolving i, j and k components.
For i component.
For j component.
For k component.
Calculate the angular acceleration at A of each plane using the relation of
Substitute
Substitute 0 for
Resolving i, j and k components.
For i component.
For j component.
For k component.
Refer to Figure 1.
The acceleration at A along the x axis
Substitute
Calculate the angular acceleration along y axis
Substitute
Calculate the angular acceleration
Substitute
Therefore, the angular acceleration of the guide arm is
(b)
Find the acceleration of point C.
Answer to Problem 15.202P
The acceleration of point C is
Explanation of Solution
Given information:
The velocity at B is
Calculation:
Refer to part (a).
The angular velocity of the guide arm is
The angular acceleration of the guide arm is
The velocity at C is
Calculate the acceleration at C
Substitute
Therefore, the acceleration of point C is
Want to see more full solutions like this?
Chapter 15 Solutions
Connect 1 Semester Access Card for Vector Mechanics for Engineers: Statics and Dynamics
Additional Engineering Textbook Solutions
Java: An Introduction to Problem Solving and Programming (8th Edition)
Thermodynamics: An Engineering Approach
SURVEY OF OPERATING SYSTEMS
Automotive Technology: Principles, Diagnosis, And Service (6th Edition) (halderman Automotive Series)
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
Starting Out with Python (4th Edition)
- The airplane weighs 144100 lbs and flies at constant speed and trajectory given by 0 on the figure. The plane experiences a drag force of 73620 lbs. 0 a.) If 11.3°, determine the thrust and lift forces = required to maintain this speed and trajectory. b.) Next consider the case where is unknown, but it is known that the lift force is equal to 7.8 times the quantity (Fthrust Fdrag). Compute the resulting trajectory angle and the lift force in this case. Use the same values for the weight and drag forces as you used for part a. 20. YAAY' Farag Ө Fthrust CC + BY NC SA 2013 Michael Swanbom Flift Fweight The lift force acts in the y' direction. The weight acts in the negative y direction. The thrust and drag forces act in the positive and negative x' directions respectively. Part (a) The thrust force is equal to 101,855 ☑ lbs. The lift force is equal to 141,282 ☑ lbs. Part (b) The trajectory angle 0 is equal to 7.31 ✓ deg. The lift force is equal to 143,005 ☑ lbs.arrow_forwardsimply supported beam has a concentrated moment M, applied at the left support and a concentrated force F applied at the free end of the overhang on the right. Using superposition, determine the deflection equations in regions AB and BC.arrow_forwardwhat is heat exchanger, what are formulas, and their importance, define the diagram, and give me a script on how to explain the design of heat exchanger, and how did values end up in that number. based on standards . what is dshellarrow_forward
- FIGURE P1.37 1.38 WP As shown in Figure P1.38, an inclined manometer is used to measure the pressure of the gas within the reservoir, (a) Using data on the figure, determine the gas pressure, in lbf/in.² (b) Express the pressure as a gage or a vacuum pressure, as appropriate, in lbf/in.² (c) What advantage does an inclined manometer have over the U-tube manometer shown in Figure 1.7? Patm = 14.7 lbf/in.² L I C i Gas a Oil (p = 54.2 lb/ft³) 140° 8=32.2 ft/s² 15 in.arrow_forwardwhat is an low pressure Heater, what are formulas, and their importance, define the diagram, and give me a script on how to explain the design of an air preheater, and how did values end up in that number. based on standardsarrow_forwardwhat is an air preheater, what are formulas, and their importance, define the diagram, and give me a script on how to explain the design of an air preheater, and how did values end up in that number. based on standardsarrow_forward
- Qf, Qa,Qm, Qcon,Qfg, Qbd, Qref,Qloss ( meaning, formula, percentage, and importance of higher value na qf, qa etc)arrow_forwardThe beam is supported by a fixed support at point C and a roller at point A. It also has an internal hinge at point B. The beam supports a point load at point D, a moment at point A and a distributed load on segment BC. a. calculate the support reactions at points A and C b. calculate the internal resultant loadings (N, V, M) at points E and F, which lies in the middle between points A and D P = 4 kip Ma = 5 kip-ft w1 = 3 kip/ft and w2 = 4 kip/ft a = 3 ftarrow_forwardFrom the image of the pyramid, I want to find what s1 hat, s2 hat, and s3 hat are. I think s3 hat is just equal to e3 hat right? What about the others?arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY