
Concept explainers
(a)
The common angular acceleration of unit AB.
(a)

Answer to Problem 15.200P
The common angular acceleration of unit AB
Explanation of Solution
Given information:
The constant angular velocities of gears C and D is 30 rad/s and 20 rad/s respectively.
Calculation:
Draw the free body diagram of the planetary gear system as in Figure (1).
Place origin at F.
Write the relative position vector
Write the relative position vector
Determine the velocity value
Here,
Substitute
Determine the velocity value
Here,
Substitute
The motion of gear unit AB is
Determine the velocity vector
Substitute
Substitute 0 for
Equate the k component in Equation (1).
Determine the velocity vector
Substitute
Equate the k component.
Add the Equation (2) and (3).
Determine the value of
Substitute
Determine the common angular velocity of gears A and B
Substitute
Draw the free body diagram of the shaft system with FH as in Figure (2).
The point N is at nut, which is a part of unit AB and also is a part of shaft GH.
Write the distance of point N along x axis.
Write the relative position vector
Substitute
The nut N as a part of unit AB.
Determine the velocity vector
Substitute
The nut N as a part of shaft FH.
Determine the velocity vector
Substitute
Equate the Equations (4) and (5).
The angular velocity vector
Determine the common angular acceleration of unit AB.
Substitute
Therefore, the common angular acceleration of unit AB
(b)
The acceleration of the tooth of gear A which is in contact with gear C at point 1.
(b)

Answer to Problem 15.200P
The acceleration of the tooth of gear A which is in contact with gear C at point 1
Explanation of Solution
Given information:
The constant angular velocities of gears C and D is 30 rad/s and 20 rad/s respectively.
Calculation:
Determine the acceleration of the tooth of gear A which is in contact with gear C at point 1.
Substitute
Therefore, the acceleration of the tooth of gear A which is in contact with gear C at point 1
Want to see more full solutions like this?
Chapter 15 Solutions
Connect 1 Semester Access Card for Vector Mechanics for Engineers: Statics and Dynamics
- A garden hose attached with a nozzle is used to fill a 20-gal bucket. The inner diameter of the hose is 1 in and it reduces to 0.53 in at the nozzle exit. The average velocity in the hose is 8 ft/s and the density of water is 62.4 lbm/ft3. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Determine the volume and mass flow rates of water through the hose. The volume flow rate of water through the hose is ft3/s. The mass flow rate of water through the hose is lbm/s. The change in time? What is the exit velocity?arrow_forwardA 23-ft3 rigid tank initially contains saturated refrigerant-134a vapor at 160 psia. As a result of heat transfer from the refrigerant, the pressure drops to 50 psia. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Determine the final temperature. Use data from refrigerant tables. The final temperature is ºF.arrow_forwardA 23-ft3 rigid tank initially contains saturated refrigerant-134a vapor at 160 psia. As a result of heat transfer from the refrigerant, the pressure drops to 50 psia. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Determine the heat transfer. The heat transfer is Btu.arrow_forward
- The shaft shown in the figure below is subjected to axial loads as illustrated. The diameters of segments AB, BC, and CD are 20mm, 25mm, and 15mm, respectively. If the modulus of elasticity of the material is 610 MPa. Determine the change of A to D lengtharrow_forwardDetermine the final pressure and temperature. The final pressure is kPa. The final temperature is ºC.arrow_forwardAir enters the 1-m2 inlet of an aircraft engine at 100 kPa and 20°C with a velocity of 184 m/s. Determine the volume flow rate, in m3/s, at the engine’s inlet and the mass flow rate, in kg/s, at the engine’s exit. The gas constant of air is R = 0.287 kPa·m3/kg·K. The volume flow rate at the engine’s inlet m3/s. The mass flow rate at the engine’s exit is kg/s.arrow_forward
- The ventilating fan of the bathroom of a building has a volume flow rate of 33 L/s and runs continuously. If the density of air inside is 1.20 kg/m3, determine the mass of air vented out in one day. The mass of air is kg.arrow_forwardA steady-flow compressor is used to compress helium from 15 psia and 70°F at the inlet to 200 psia and 600°F at the outlet. The outlet area and velocity are 0.01 ft2 and 100 ft/s, respectively, and the inlet velocity is 53 ft/s. Determine the mass flow rate and the inlet area. The gas constant of helium is R = 2.6809 psia·ft3/lbm·R. The mass flow rate is lbm/s. The inlet area is ft2.arrow_forward1. The maximum and minimum stresses as well as the shear stress seen subjected the piece in plane A-A. Assume it is a cylinder with a diameter of 12.7mm 2. Draw the Mohr circle for the stress state using software. 3. Selection of the material for the prosthesis, which must be analyzed from the point of safety and cost view.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





