Gradients in three dimensions Consider the following functions f, points P, and unit vectors u. a. Compute the gradient of f and evaluate it at P b. Find the unit vector in the direction of maximum increase of f at P. c. Find the rate of change of the function in the direction of maximum increase at P. d. Find the directional derivative at P in the direction of the given vector. 55. f ( x , y , z ) = x 2 + 2 y 2 + 4 z 2 + 10 ; P ( 1 , 0 , 4 ) ; 〈 1 2 , 0 , 1 2 〉
Gradients in three dimensions Consider the following functions f, points P, and unit vectors u. a. Compute the gradient of f and evaluate it at P b. Find the unit vector in the direction of maximum increase of f at P. c. Find the rate of change of the function in the direction of maximum increase at P. d. Find the directional derivative at P in the direction of the given vector. 55. f ( x , y , z ) = x 2 + 2 y 2 + 4 z 2 + 10 ; P ( 1 , 0 , 4 ) ; 〈 1 2 , 0 , 1 2 〉
Gradients in three dimensionsConsider the following functions f, points P, and unit vectors u.
a.Compute the gradient of f and evaluate it at P
b.Find the unit vector in the direction of maximum increase of f at P.
c.Find the rate of change of the function in the direction of maximum increase at P.
d.Find the directional derivative at P in the direction of the given vector.
55.
f
(
x
,
y
,
z
)
=
x
2
+
2
y
2
+
4
z
2
+
10
;
P
(
1
,
0
,
4
)
;
〈
1
2
,
0
,
1
2
〉
Quantities that have magnitude and direction but not position. Some examples of vectors are velocity, displacement, acceleration, and force. They are sometimes called Euclidean or spatial vectors.
1. For each of the following, find the critical numbers of f, the intervals on which f is increasing or decreasing, and the relative
maximum and minimum values of f.
(a) f(x) = x² - 2x²+3
(b) f(x) = (x+1)5-5x-2
(c) f(x) =
x2
x-9
2. For each of the following, find the intervals on which f is concave upward or downward and the inflection points of f.
(a) f(x) = x - 2x²+3
(b) g(x) = x³- x
(c) f(x)=x-6x3 + x-8
3. Find the relative maximum and minimum values of the following functions by using the Second Derivative Test.
(a) f(x)=1+3x² - 2x3
(b) g(x) = 2x3 + 3x² - 12x-4
Find the
Soultion to the following dy
differential equation using Fourier in
transforms:
=
, хуо, ухо
according to the terms:
lim u(x,y) = 0
x18
lim 4x (x,y) = 0
x14
2
u (x, 0) =
=\u(o,y) =
-y
لو
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.