Interpreting directional derivatives A function f and a point P are given. Let θ correspond to the direction of the directional derivative. a. Find the gradient and evaluate it at P. b. Find the angles θ ( with respect to the positive x-axis ) associated with the directions of maximum increase, maximum decrease, and zero change. c. Write the directional derivative at P as a function of θ; call this function g. d. Find the value of θ that maximizes g ( θ ) and find the maximum value. e. Verify that the value of θ that maximizes g corresponds to the direction of the gradient. Verify that the maximum value of g equals the magnitude of the gradient . 35 . f ( x , y ) = 2 + x 2 + y 2 ; P ( 3 , 1 )
Interpreting directional derivatives A function f and a point P are given. Let θ correspond to the direction of the directional derivative. a. Find the gradient and evaluate it at P. b. Find the angles θ ( with respect to the positive x-axis ) associated with the directions of maximum increase, maximum decrease, and zero change. c. Write the directional derivative at P as a function of θ; call this function g. d. Find the value of θ that maximizes g ( θ ) and find the maximum value. e. Verify that the value of θ that maximizes g corresponds to the direction of the gradient. Verify that the maximum value of g equals the magnitude of the gradient . 35 . f ( x , y ) = 2 + x 2 + y 2 ; P ( 3 , 1 )
Interpreting directional derivativesA function f and a point P are given. Let θ correspond to the direction of the directional derivative.
a. Find the gradient and evaluate it at P.
b. Find the angles θ (with respect to the positive x-axis) associated with the directions of maximum increase, maximum decrease, and zero change.
c. Write the directional derivative at P as a function of θ; call this function g.
d. Find the value of θ that maximizes g(θ) and find the maximum value.
e. Verify that the value of θ that maximizes g corresponds to the direction of the gradient. Verify that the maximum value of g equals the magnitude of the gradient.
Consider the following system of equations, Ax=b :
x+2y+3z - w = 2
2x4z2w = 3
-x+6y+17z7w = 0
-9x-2y+13z7w = -14
a. Find the solution to the system. Write it as a parametric equation. You can use a
computer to do the row reduction.
b. What is a geometric description of the solution? Explain how you know.
c. Write the solution in vector form?
d. What is the solution to the homogeneous system, Ax=0?
2. Find a matrix A with the following qualities
a. A is 3 x 3.
b. The matrix A is not lower triangular and is not upper triangular.
c. At least one value in each row is not a 1, 2,-1, -2, or 0
d. A is invertible.
Find the exact area inside r=2sin(2\theta ) and outside r=\sqrt(3)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Differential Equation | MIT 18.01SC Single Variable Calculus, Fall 2010; Author: MIT OpenCourseWare;https://www.youtube.com/watch?v=HaOHUfymsuk;License: Standard YouTube License, CC-BY