Interpreting directional derivatives A function f and a point P are given. Let θ correspond to the direction of the directional derivative. a. Find the gradient and evaluate it at P. b. Find the angles θ ( with respect to the positive x-axis ) associated with the directions of maximum increase, maximum decrease, and zero change. c. Write the directional derivative at P as a function of θ; call this function g. d. Find the value of θ that maximizes g ( θ ) and find the maximum value. e. Verify that the value of θ that maximizes g corresponds to the direction of the gradient. Verify that the maximum value of g equals the magnitude of the gradient . 37 . f ( x , y ) = e − x 2 − 2 y 2 ; P ( − 1 , 0 )
Interpreting directional derivatives A function f and a point P are given. Let θ correspond to the direction of the directional derivative. a. Find the gradient and evaluate it at P. b. Find the angles θ ( with respect to the positive x-axis ) associated with the directions of maximum increase, maximum decrease, and zero change. c. Write the directional derivative at P as a function of θ; call this function g. d. Find the value of θ that maximizes g ( θ ) and find the maximum value. e. Verify that the value of θ that maximizes g corresponds to the direction of the gradient. Verify that the maximum value of g equals the magnitude of the gradient . 37 . f ( x , y ) = e − x 2 − 2 y 2 ; P ( − 1 , 0 )
Interpreting directional derivativesA function f and a point P are given. Let θ correspond to the direction of the directional derivative.
a. Find the gradient and evaluate it at P.
b. Find the angles θ (with respect to the positive x-axis) associated with the directions of maximum increase, maximum decrease, and zero change.
c. Write the directional derivative at P as a function of θ; call this function g.
d. Find the value of θ that maximizes g(θ) and find the maximum value.
e. Verify that the value of θ that maximizes g corresponds to the direction of the gradient. Verify that the maximum value of g equals the magnitude of the gradient.
1. For each of the following, find the critical numbers of f, the intervals on which f is increasing or decreasing, and the relative
maximum and minimum values of f.
(a) f(x) = x² - 2x²+3
(b) f(x) = (x+1)5-5x-2
(c) f(x) =
x2
x-9
2. For each of the following, find the intervals on which f is concave upward or downward and the inflection points of f.
(a) f(x) = x - 2x²+3
(b) g(x) = x³- x
(c) f(x)=x-6x3 + x-8
3. Find the relative maximum and minimum values of the following functions by using the Second Derivative Test.
(a) f(x)=1+3x² - 2x3
(b) g(x) = 2x3 + 3x² - 12x-4
Find the
Soultion to the following dy
differential equation using Fourier in
transforms:
=
, хуо, ухо
according to the terms:
lim u(x,y) = 0
x18
lim 4x (x,y) = 0
x14
2
u (x, 0) =
=\u(o,y) =
-y
لو
College Algebra with Modeling & Visualization (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Differential Equation | MIT 18.01SC Single Variable Calculus, Fall 2010; Author: MIT OpenCourseWare;https://www.youtube.com/watch?v=HaOHUfymsuk;License: Standard YouTube License, CC-BY