In the planetary gear system shown, the radius of gears A, B, C, and D is 3 in. and the radius of the outer gear E is 9 in. Knowing that gear A has a constant angular velocity of 150 rpm clockwise and that the outer gear E is stationary, determine the magnitude of the acceleration of the tooth of gear D that is in contact with (a) gear A, (b) gear E.
Fig. P15.118
Want to see the full answer?
Check out a sample textbook solutionChapter 15 Solutions
Vector Mechanics for Engineers: Statics and Dynamics
Additional Engineering Textbook Solutions
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
Vector Mechanics for Engineers: Dynamics
Foundations of Materials Science and Engineering
Automotive Technology: Principles, Diagnosis, And Service (6th Edition) (halderman Automotive Series)
Vector Mechanics for Engineers: Statics
Fluid Mechanics Fundamentals And Applications
- 1. A gear reduction system consists of three gears A, B, and C. Knowing that gear A rotates clockwise with a constant angular velocity a- 600 rpm, determine (a) the angular velocities of gears B and C, (b) the accelerations of the points on gears B and C which are in contact. 2 in. 2 in. 4 in. 6 in. 2. In the planctary gear system shown, the radius of gears A, B, C, and D is 3 in. and the radius of the outer gear E is 9 in. Knowing that gear E has an angular vekocity of 120 rpm clockwise and that the central gear has an angular velocity of 150 rpm elockwise, determine (a) the angular velocity of cach planetary gear, (b) the angular velocity of the spider connecting the planetary gears. Earrow_forward15.113 The 360-mm-radius flywheel is rigidly attached to a 30-mm- radius shaft that can roll along parallel rails. Knowing that at the instant shown the center of the shaft has a velocity of 24 mm/s and an acceleration of 10 mm/s, both directed down to the left, determine the acceleration (a) of point A, (b) of point B. A 2₂x 360 mm- 20° Barrow_forwardA The 18-in.-radius fly wheel is rigidly attached to a 1.5-in. -radius shaft that can roll along parallel rails. Knowing that at the instant shown the center of the shaft has a velocity of 1.2 in/s and an acceleration of 0.5 in/s?, both directed down to the left, determine the acceleration (a) of point A, (b) of point B. 18 in. 20 Вarrow_forward
- 6) Bar BDE is attached to two links AB and CD. Knowing that at the instant shown link AB rotates with a constant angular velocity of 3 rad/s clockwise, determine the acceleration (a) of point D, (b) of point E. 19.1 cm 19.1 cm C -30.5 cm -22.9 cm- B ODarrow_forwardProblem 3. In the engine system shown / =160 mm and 6 = 60 mm. Knowing that crank AB rotates with a constant angular velocity of 1000 rpm clockwise, determine the velocity of the piston P and the angular velocity of the connecting rod when = 60°.arrow_forwardProblem (1) A belt-driven pulley and attached disk are rotating with increasing angular velocity. If at a given instant, the speed of the belt is v = 1.5 m/s, and the total acceleration of point A is 100 m/s?, determine: (a) The angular acceleration a of the pulley and disk (b) The total acceleration of point B (c) The acceleration of point C on the belt. A 150 mm 200 mmarrow_forward
- B10arrow_forward15.119 The 200-mm-radius disk rolls without sliding on the surface shown. Knowing that the distance BG is 160 mm and that at the instant shown the disk has an angular velocity of 8 rad/s counterclockwise and an angular acceleration of 2 rad/s² clockwise, determine the acceleration of A. A Fig. P15.119 800 mm B 200 mm Garrow_forwardThe assembly shown consists of two rods and a rectangular plate BCDE that are welded together. The assembly rotates about the axis AB with a constant angular velocity of 16 rad/s. Knowing that the rotation is counterclockwise as viewed from B, determine the velocity and acceleration of corner E. 225 mm 500 mm The velocity of corner Eis ( The acceleration of corner Eis -( 300 mm m/s)i + 1 m/s²)i + x m/s)j. /s²)j + m/s +( m/s²)k.arrow_forward
- A disc rolls without slipping. The magnitude of the angular velocity ω= 1.0 rad/s, the angular acceleration α=1.0 rad/s2. The radius of the disc is r=2.0 m. (4) Determine the direction of the acceleration of the point A ________ A. down B. left C. up D. rightarrow_forward15.168 and 15.169 A chain is looped around two gears of radius 2 in, that can rotate freely with respect to the 16-in. arm AB. The chain moves about arm AB in a clockwise direction at the constant rate of 4 in/s relative to the arm. Knowing that in the position shown arm AB rotates clockwise about A at the constant rate = 0.75 rad/s, determine the acceleration of each of the chain links indicated. @ Links 1 and 2. 15.168 15.169 Links 3 and 4. 4 8 in." Fig. P15.168 and P15.169 8 in.- B 3arrow_forward15.123 Knowing that crank AB rotates about point A with a constant angular velocity of 900 rpm clockwise, determine the acceleration of the pis- ton P when 0 = 60°. D 2 in. B 6 in.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY