(a)
To determine:
The effect on translation process if Initiation factor-3 was removed from the cell-free protein-synthesizing system
Introduction:
Protein synthesis involves translation of mRNA into a protein that requires three complex stages: initiation, elongation, and termination. For the translation process to be completed, it requires several elements, such as ribosomes, tRNA, initiation factor, elongation factor, start codon, stop codon, release factor and so on. The translation process is completed when the ribosome translocates to a stop codon. If any of thesecomponents of translational machinery were omitted then the process of protein synthesis will be affected.
(a)
Explanation of Solution
(a) Initiation factor-3
The process of translation begins with the initiation stage, which requires initiation factors. Initiation factor 3 (IF-3) first come into the role in the translational process, it binds to the small subunit of the ribosome and restricts the association of large ribosomal subunit during initiation. The 30S initiation complex is formed by the binding of mRNA to the 30S ribosomal subunit. Initiation factor 3 attaches to the 30S subunit before the synthesis of the 30S initiation complex. During the last stage of the initiation process, IF-3 detaches from the 30S ribosomal subunit and facilitates the binding of the large ribosomal subunit to form a 70S initiation complex.
Therefore, elimination of IF-3 from cell-free protein synthesizing system would result in the decreased amount of protein synthesis and it also lowers the pace of initiation because more of 30S ribosomal subunit remains bound to the 50S subunit.
(b)
To determine:
The effect on translation process if Initiation factor-2 was removed from the cell-free protein-synthesizing system.
Introduction:
Protein synthesis involves translation of mRNA into a protein that requires three complex stages: initiation, elongation, and termination. For the translation process to be completed, it requires several elements, such as ribosomes, tRNA, initiation factor, elongation factor, start codon, stop codon, release factor and so on. The translation process is completed when the ribosome translocates to a stop codon. If any of thesecomponents of translational machinery were omitted then the process of protein synthesis will be affected.
(b)
Explanation of Solution
(b) Initiation factor-2
The process of translation begins with the initiation stage which requires initiation factors. Initiation factor 2 (IF-2) is a very essential component of translation as the binding of fMet-tRNA with the initiation codon is done through IF-2. If initiation factor 2 is removed from the translational machinery then the process of protein synthesis would terminate. fMet-tRNA would not be transferred to the 30S ribosomal subunit, which prevents the synthesis of the 30S initiation complex, in the absence of IF-2. The translation process will be ceased due to the absence of IF-2.
(c)
To determine:
The effect on translation process if Elongation Factor-Tu was removed from the cell-free protein-synthesizing system.
Introduction:
Protein synthesis involves translation of mRNA into a protein that requires three complex stages: initiation, elongation, and termination. For the translation process to be completed, it requires several elements, such as ribosomes, tRNA, initiation factor, elongation factor, start codon, stop codon, release factor and so on. The translation process is completed when the ribosome translocates to a stop codon. If any of thesecomponents of translational machinery were omitted then the process of protein synthesis will be affected.
(c)
Explanation of Solution
(c) Elongation Factor Tu (EF-Tu)
Elongation is one of the major stages in the synthesis of proteins. Elongation involves the joining of amino acids to produce a polypeptide chain. Elongation process requires several elongation factors. Elongation factor Tu comes into role first, it allows the binding of tRNA to the A site of the ribosome. This elongation factor joins with GTP and further with a charged tRNA to produce a three-part complex.
EF-Tu helps in the elongation of the polypeptide by forming three-part complex, this complex enters into A site of the ribosome where it delivers the charged tRNA. If EF-Tu were omitted from translation machinery then the charged tRNA would not be transferred to the A site of the ribosome and thus the process of translation will stop.
(d)
To determine:
The effect on translation process if Elongation Factor-G was removed from the cell-free protein-synthesizing system.
Introduction:
Protein synthesis involves translation of mRNA into a protein that requires three complex stages: initiation, elongation, and termination. For the translation process to be completed, it requires several elements, such as ribosomes, tRNA, initiation factor, elongation factor, start codon, stop codon, release factor and so on. The translation process is completed when the ribosome translocates to a stop codon. If any of thesecomponents of translational machinery were omitted then the process of protein synthesis will be affected.
(d)
Explanation of Solution
(d) Elongation Factor G (EF-G)
Elongation is one of the major stages in the synthesis of proteins. Elongation involves the joining of amino acids to produce a polypeptide chain. Elongation process requires several elongation factors. Elongation factor-G is required during the translocation of ribosome down the mRNA in
If EF-G component were omitted from translation machinery then the movement of the ribosome along the mRNA will not occur and thus it will prevent the reading of new codons. The elongation of the polypeptide chain will stop and it will hamper the protein synthesis.
(e)
To determine:
The effect on translation process if Release factors was removed from the cell-free protein-synthesizing system.
Introduction:
Protein synthesis involves translation of mRNA into a protein that requires three complex stages: initiation, elongation, and termination. For the translation process to be completed, it requires several elements, such as ribosomes, tRNA, initiation factor, elongation factor, start codon, stop codon, release factor and so on. The translation process is completed when the ribosome translocates to a stop codon. If any of thesecomponents of translational machinery were omitted then the process of protein synthesis will be affected.
(e)
Explanation of Solution
(e) Release factors RF-1, RF-1, and RF-3
Release factors play important role in recognition of termination codon which aids in the ending of the translation process. RF-1 is used to recognize the termination codon UAA and UAG while RF-2 identifies UGA and UAA. RF-1 and RF-1 bind with each other at the A site of the ribosome and promotes the freeing of a polypeptide chain and the cleavage of tRNA at P site of the ribosome. RF-3 binds with GTP and forms RF-3-GTP complex, which binds to the ribosome and results in a conformational change in it. The complex releases the RF-1 or RF-2 from A site of the ribosome, and the tRNA moves to the E site from P site. Finally, the GTP complex is being hydrolyzed and the tRNA is released from the P site. The mRNA is cleaved fromthe ribosome and this marks the termination of the translation process.
(f)
To determine:
The effect on translation process if ATP was removed from the cell-free protein-synthesizing system.
Introduction:
Protein synthesis involves translation of mRNA into a protein that requires three complex stages: initiation, elongation, and termination. For the translation process to be completed, it requires several elements, such as ribosomes, tRNA, initiation factor, elongation factor, start codon, stop codon, release factor and so on. The translation process is completed when the ribosome translocates to a stop codon. If any of thesecomponents of translational machinery were omitted then the process of protein synthesis will be affected.
(f)
Explanation of Solution
(f) ATP
ATP is required for the charging of tRNA with aminoacyl-tRNA synthetase. The coupling of tRNA to its suitable amino acid is termed as tRNA charging which requires ATP. If ATP were omitted from translational machinery, the charging of tRNAs will not occur. If tRNA will not charge then no amino acids will be available for translation and thus protein synthesis will not occur.
(g)
To determine:
The effect on translation process if GTP was removed from the cell-free protein-synthesizing system.
Introduction:
Protein synthesis involves translation of mRNA into a protein that requires three complex stages: initiation, elongation, and termination. For the translation process to be completed, it requires several elements, such as ribosomes, tRNA, initiation factor, elongation factor, start codon, stop codon, release factor and so on. The translation process is completed when the ribosome translocates to a stop codon. If any of thesecomponents of translational machinery were omitted then the process of protein synthesis will be affected.
(g)
Explanation of Solution
(g) GTP
GTP plays a significant role in the process of initiation, elongation, and termination during protein synthesis. If GTP were omitted then the process of protein synthesis will not occur. GTP forms an importantcomplex with the components involves in translation and support the protein synthesis.
Want to see more full solutions like this?
Chapter 15 Solutions
Genetics
- UARDIAN SIGNA Life Sciences/ Baseline Test Grade 10 ry must be written in point form. pot in full sentences using NO MORE than 70 words sentences from 1 to 7. only ONE point per sentence. words as far as possible. number of words you have used in brackets at the end GDE/2024 QUESTION 3 The table below shows the results of an investigation in which the effect of temperature and light on the yield of tomatoes in two greenhouses on a farm was investigated. TEMPERATURE (°C) AVERAGE YIELD OF TOMATOES PER 3.1 PLANT (kg) LOW LIGHT LEVELS HIGH LIGHT LEVELS 5 0,5 0,5 10 1,5 2,5 15 3,0 5,0 20 3,6 8,5 25 3,5 7,8 30 2,5 6,2 State TWO steps the investigator may have taken into consideration during the planning stage of the investigation. (2) 3.2 Identify the: a) Independent variables (2) b) Dependent variable (1) 3.3 Plot a line graph showing the results of the average yield of the tomatoes from 5°C to 30°C for low light levels. (6) 3.4 State ONE way in which the scientists could have improved the…arrow_forwardExplain why you chose this mutation. Begin by transcribing and translating BOTH the normal and abnormal DNA sequences. The genetic code below is for your reference. SECOND BASE OF CODON כ FIRST BASE OF CODON O THIRD BASE OF CODON SCAGUCAGUGAGUCAG UUU UUC UCU UAU UGU Phenylalanine (F) Tyrosine (Y) Cysteine (C) UCC UAC UGC Serine (S) UUA UUG Leucine (L) UCA UCG_ UAA UGA Stop codon -Stop codon UAG UGG -Tryptophan (W) CUU CUC CCU CAU CGU Histidine (H) CCC CAC CGC -Leucine (L) Proline (P) CUA CCA CAA CUG CCG CAG-Glutamine (Q) -Arginine (R) CGA CGG AUU ACU AAU AGU AUC Isoleucine (1) Asparagine (N) ACC AAC Threonine (T) AUA ACA AAA Methionine (M) Lysine (K) AUG ACG Start codon AAG AGC-Serine (S) -Arginine (R) AGA AGG GUU GCU GAU GUC GUA GUG GCC Valine (V) -Alanine (A) GCA GCG GAC GAA GAG Aspartic acid (D) GGU Glutamic acid (E) GGC GGA GGG Glycine (G) In order to provide a complete answer to the question stated above, fill in the mRNA bases and amino acid sequences by using the Genetic Code…arrow_forwardidentify the indicated cell in white arrowarrow_forward
- Gloeocaspa Genus - diagram a colony and label the sheath, cell wall, and cytoplasm. Oscillatoria Genus - Diagram a trichome, and label the shealth and individual cells Nostoc Genus- diagram a sketch of the colonoy microscopically from low power to the left of the drawing. Draw a filament showing intercalary heterocysts, and vegatative cells to the right of the drawing Merismopedia Genus- diagram a sketch of the colony. draw and label a filament showing the colony, cell wall, and sheath. Gloeotrichia Genus- diagram a habit sketch of the colony. draw a filament showing the heterocyst, akimetes and vegatative cells of the filamentarrow_forwardOf this list shown, which genus does the image belong toarrow_forwardidentify the cell shownarrow_forward
- identify the genusarrow_forwardWhat Genus is this?arrow_forwardAs a medical professional, it is important to be able to discuss how genetic processes such as translation regulation can directly affect patients. Think about some situations that might involve translation regulation. Respond to the following in a minimum of 175 words: Why is translation regulation important? What are some examples of translation regulation in humans? Select one of the examples you provided and explain what happens when translation regulation goes wrong.arrow_forward
- The metabolic pathway below is used for the production of the purine nucleotides adenosine monophosphate (AMP) and guanosine monophosphate (GMP) in eukaryotic cells. Assume each arrow represents a reaction catalyzed by a different enzyme. Using the principles of feedback inhibition, propose a regulatory scheme for this pathway that ensures an adequate supply of both AMP and GMP, and prevents the buildup of Intermediates A through G when supplies of both AMP and GMP are adequate.arrow_forwardQUESTION 27 Label the structures marked A, B, C and explain the role of structure A. W plasma membrane For the toolbar, press ALT+F10 (PC) or ALT+FN+F10 (Mac). BIUS ☐ Paragraph Π " ΩΘΗ Β Open Sans, a... 10pt EEarrow_forwardexamples of synamptomorphyarrow_forward
- Human Anatomy & Physiology (11th Edition)BiologyISBN:9780134580999Author:Elaine N. Marieb, Katja N. HoehnPublisher:PEARSONBiology 2eBiologyISBN:9781947172517Author:Matthew Douglas, Jung Choi, Mary Ann ClarkPublisher:OpenStaxAnatomy & PhysiologyBiologyISBN:9781259398629Author:McKinley, Michael P., O'loughlin, Valerie Dean, Bidle, Theresa StouterPublisher:Mcgraw Hill Education,
- Molecular Biology of the Cell (Sixth Edition)BiologyISBN:9780815344322Author:Bruce Alberts, Alexander D. Johnson, Julian Lewis, David Morgan, Martin Raff, Keith Roberts, Peter WalterPublisher:W. W. Norton & CompanyLaboratory Manual For Human Anatomy & PhysiologyBiologyISBN:9781260159363Author:Martin, Terry R., Prentice-craver, CynthiaPublisher:McGraw-Hill Publishing Co.Inquiry Into Life (16th Edition)BiologyISBN:9781260231700Author:Sylvia S. Mader, Michael WindelspechtPublisher:McGraw Hill Education