Consider the reaction in which HCI adds across the double bond of ethene:
The following mechanism, with the accompanying energy diagram has been suggested for this reaction:
Step 1
Step 2
a. Based on the energy diagram, determine which step is rate limiting.
b. What is the expected order of the reaction based on the proposed mechanism?
c. Is the overall reaction exothermic or endothermic?
Want to see the full answer?
Check out a sample textbook solutionChapter 15 Solutions
Chemistry: Structure and Properties Custom Edition for Rutgers University General Chemistry
- Assuming that the mechanism for the hydrogenation of C2H4 given in Section 11-7 is correct, would you predict that the product of the reaction of C2H4. with D2 would be CH2DCH2D or CHD2CH3? How could the reaction of C2H4 with D2 be used to confirm the mechanism for the hydrogenation of C2H4 given in Section 11-7?arrow_forwardThere are two molecules with the formula C3H6 Propane, CH3CH = CH2, is the monomer of the polymer polypropylene, which is used for indoor-outdoor carpets. Cyclopropane is used as an anesthetic: When heated to 499 C, cyclopropane rearranges (isomerizes) and forms propane with a rate constant of 5.95104s1. What is the half-life of this reaction? What fraction of the cyclopropane remains after 0.75 h at 499 C?arrow_forwardThe Raschig reaction produces the industrially important reducing agent hydrazine, N2H4, from ammonia, NH3, and hypochlorite ion, OCl−, in basic aqueous solution. A proposed mechanism is Step 1: Step 2: Step 3: What is the overall stoichiometric equation? Which step is rate-limiting? What reaction intermediates are involved? What rate law is predicted by this mechanism?arrow_forward
- One possible mechanism for the decomposition of nitryl chloride, NO2CI, is What is the overall reaction? What rate law would be derived from this mechanism? What effect does increasing the concentration of the product NO2 have on the reaction rate?arrow_forwardFor the past 10 years, the unsaturated hydrocarbon 1, 3-butadiene (CH2 = CH - CH = CH2) has ranked 38th among the top 50 industrial Chemicals. It is used primarily for the manufacture of synthetic rubber. An isomer exists also as cyclobutene: The isomerization of cyclobutene to butadiene is first-order and the rate constant has been measured as 2.0104s1 at 150 C in a 0.53-L ?ask. Determine the partial pressure of cyclobutene and its concentration after 30.0 minutes if an isomerization reaction is carried out at 150 C with an initial pressure of 55 torr.arrow_forwardThe decomposition of azomethane, (CH3)2N2, to nitrogen and ethane gases is a first-order reaction, (CH3)2N2(g)N2(g)+C2H6(g). At a certain temperature, a 29-mg sample of azomethane is reduced to 12 mg in 1.4 s. (a) What is the rate constant k for the decomposition at that temperature? (b) What is the half-life of the decomposition? (c) How long will it take to decompose 78% of the azomethane?arrow_forward
- At 620. K butadiene dimerizes at a moderate rate. The following data were obtained in an experiment involving this reaction: t(s) [C4H6] (mol/L) 0 0.01000 1000.. 0.00629 2000. 0.00459 3000. 0.00361 a. Determine the order of the reaction in butadiene. b. In how many seconds is the dimerization 1.0% complete? c. In how many seconds is the dimerization 10.0% complete? d. What is the half-life for the reaction if the initial concentration of butadiene is 0.0200 M? e. Use the results from this problem and Exercise 45 to calculate the activation energy for the dimerization of butadiene.arrow_forwardGaseous azomethane (CH3N2CH3) decomposes to ethane and nitrogen when heated: CH3N2CH3(g) CH3CH3(g) + N2(g) The decomposition of azomethane is a first-order reaction with k = 3.6 104 s1 at 600 K. (a) A sample of gaseous CH3N2CH3 is placed in a flask and heated at 600 K for 150 seconds. What fraction of the initial sample remains after this time? (b) How long must a sample be heated so that 99% of the sample has decomposed?arrow_forwardDefine stability from both a kinetic and thermodynamic perspective. Give examples to show the differences in these concepts.arrow_forward
- The acid-catalyzed iodination of acetone CH3COCH3(aq) + I2(aq) CH3COCH2I(aq) + HI(aq) is a common laboratory experiment used in general chemistry courses to teach the method of initial rates. The reaction is followed spectrophotometrically by the disappearance of the color of iodine in the solution. The following data (J. P. Birk and D. L Walters, Journal of Chemical Education, Vol. 69, p. 585, 1992) were collected at 23 C for this reaction. Determine the rate law for this reaction.arrow_forwardThe reaction of NO2(g) and CO(g) is thought to occur in two steps to give NO and CO2: Step 1: Slow NO2(g) + NO2(g) NO(g) + NO3(g) Step 2: Fast NO3(g) + CO(g) NO2(g) + CO2(g) (a) Show that the elementary steps add up to give the overall, stoichiometric equation. (b) What is the molecularity of each step? (c) For this mechanism to be consistent with kinetic data, what must be the experimental rate equation? (d) Identify any intermediates in tins reaction.arrow_forward11.64 HBr is oxidized in the following reaction: 4 HBr(g) + O2(g) —• 2 H2O(g) + 2 Br,(g) A proposed mechanism is HBr + O2 -* HOOBr (slow) HOOBr + HBr — 2 HOBr (fast) HOBr + HBr — H2O + Bn (fast) Show that this mechanism can account for the correct stoichiometry. Identify all intermediates in this mechanism. What is the molecularity of each elementary’ step? Write the rate expression for each elementary' step. Identify the rate-determining step.arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning