Chemistry: Structure and Properties Custom Edition for Rutgers University General Chemistry
15th Edition
ISBN: 9781269935678
Author: Nivaldo J. Tro
Publisher: Pearson Education
expand_more
expand_more
format_list_bulleted
Question
Chapter 15, Problem 75E
Interpretation Introduction
Interpretation:
Mechanism is step by step process of
Concept introduction:
The elementary steps in a mechanism are equal to the overall reaction then mechanism is valid only.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 15 Solutions
Chemistry: Structure and Properties Custom Edition for Rutgers University General Chemistry
Ch. 15 - This graph shows the concentration of the reactant...Ch. 15 - Prob. 2SAQCh. 15 - Prob. 3SAQCh. 15 - Prob. 4SAQCh. 15 - Prob. 5SAQCh. 15 - Prob. 6SAQCh. 15 - Prob. 7SAQCh. 15 - Prob. 8SAQCh. 15 - The rate constant of a reaction is measured at...Ch. 15 - Prob. 10SAQ
Ch. 15 - The mechanism shown here is proposed for the...Ch. 15 - Prob. 12SAQCh. 15 - These images represent the first-order reaction AB...Ch. 15 - Prob. 14SAQCh. 15 - Prob. 15SAQCh. 15 - Explain why lizards become sluggish in cold...Ch. 15 - Why are reaction rates important (both practically...Ch. 15 - Using the idea that reactions occur as a result of...Ch. 15 - Using the idea that reactions occur as a result of...Ch. 15 - What units are typically used to express the rate...Ch. 15 - Why is the reaction rate for reactants defined as...Ch. 15 - Explain the difference between the average rate of...Ch. 15 - Consider a simple reaction in which a reactant A...Ch. 15 - How is the order of a reaction generally...Ch. 15 - For a reaction with multiple reactants, how is the...Ch. 15 - Explain the difference between the rate law for a...Ch. 15 - Write integrated rate laws for zero-order,...Ch. 15 - What does the term half-life mean? Write the...Ch. 15 - How do reaction rates typically depend on...Ch. 15 - Prob. 15ECh. 15 - What is an Arrhenius plot? Explain the...Ch. 15 - Explain the meaning of the orientation factor in...Ch. 15 - Explain the difference between a normal chemical...Ch. 15 - In a reaction mechanism, what is an elementary...Ch. 15 - What are the two requirements for a proposed...Ch. 15 - What is an intermediate within a reaction...Ch. 15 - What is a catalyst? How does a catalyst increase...Ch. 15 - Explain the difference between homogeneous...Ch. 15 - What are the four basic steps involved in...Ch. 15 - What are enzymes? What is the active site of an...Ch. 15 - What is the general two-step mechanism by which...Ch. 15 - Consider the reaction. 2HBr(g)H2(g)+Br2(g) Express...Ch. 15 - Consider the reaction 2N2O(g)2N2(g)+O2(g) Express...Ch. 15 - For the reaction 2A(g)+B(g)3C(g) determine the...Ch. 15 - For the reaction A(g)+12B(g)2C(g) determine the...Ch. 15 - Consider the reaction. Cl2(g)+3F2(g)2ClF3(g)...Ch. 15 - Consider the reaction. 8H2S(g)+4O2(g)8H2O(g)+S8(g)...Ch. 15 - Consider the reaction: C4H8(g)2C2H4(g) The...Ch. 15 - Consider the reaction: NO2(g)NO(g)+12O2(g) The...Ch. 15 - Consider the reaction. H2(g)+Br2(g)2HBr(g) The...Ch. 15 - Consider the reaction. 2H2O2(aq)2H2O(l)+O2(g) The...Ch. 15 - This graph shows a plot of the rate of a reaction...Ch. 15 - This graph shows a plot of the rate of a reaction...Ch. 15 - What are the units of k for each type of reaction?...Ch. 15 - This reaction is first order in N2O5:...Ch. 15 - A reaction in which A, B, and C react to form...Ch. 15 - A reaction in which A, B, and C react to form...Ch. 15 - Consider the tabulated data showing initial rate...Ch. 15 - Consider the tabulated data showing initial rate...Ch. 15 - The tabulated data were collected for this...Ch. 15 - The tabulated data were collected for this...Ch. 15 - Indicate the order of reaction consistent with...Ch. 15 - Indicate the order of reaction consistent with...Ch. 15 - The tabulated data show the concentration of AB...Ch. 15 - The tabulated data show the concentration of N2O5...Ch. 15 - The tabulated data show the concentration of...Ch. 15 - Prob. 52ECh. 15 - This reaction was monitored as a function of time:...Ch. 15 - This reaction was monitored as a function of time:...Ch. 15 - Prob. 55ECh. 15 - Prob. 56ECh. 15 - Prob. 57ECh. 15 - Prob. 58ECh. 15 - The diagram shows the energy of a reaction as the...Ch. 15 - Prob. 60ECh. 15 - Prob. 61ECh. 15 - Prob. 62ECh. 15 - Prob. 63ECh. 15 - The rate constant (k) for a reaction is measured...Ch. 15 - The tabulated data shown here were collected for...Ch. 15 - Prob. 66ECh. 15 - The tabulated data were collected for the...Ch. 15 - Prob. 68ECh. 15 - A reaction has a rate constant of 0.0117/s at...Ch. 15 - A reaction has a rate constant of 0.000122/s at...Ch. 15 - Prob. 71ECh. 15 - Prob. 72ECh. 15 - Prob. 73ECh. 15 - Prob. 74ECh. 15 - Prob. 75ECh. 15 - Prob. 76ECh. 15 - Consider this three-step mechanism for a...Ch. 15 - Prob. 78ECh. 15 - Prob. 79ECh. 15 - Prob. 80ECh. 15 - Suppose that a catalyst lowers the activation...Ch. 15 - The activation barrier for the hydrolysis of...Ch. 15 - The tabulated data were collected for this...Ch. 15 - Prob. 84ECh. 15 - Consider the reaction: A+B+CD The rate law for...Ch. 15 - Consider the reaction: 2O3(g)3O2(g) The rate law...Ch. 15 - At 700 K acetaldehyde decomposes in the gas phase...Ch. 15 - Prob. 88ECh. 15 - Dinitrogen pentoxide decomposes in the gas phase...Ch. 15 - Cyclopropane (C3H6) reacts to form propene (C3H6)...Ch. 15 - Iodine atoms combine to form I2 in liquid hexane...Ch. 15 - Prob. 92ECh. 15 - The reaction AB(aq)A(g)+B(g) is second order in AB...Ch. 15 - The reaction 2H2O2(aq)2H2O(l)+O2(g) is first order...Ch. 15 - Consider this energy diagram: a. How many...Ch. 15 - Consider the reaction in which HCI adds across the...Ch. 15 - The desorption of a single molecular layer of...Ch. 15 - The evaporation of a 120-nm film of n-pentane from...Ch. 15 - Prob. 99ECh. 15 - Prob. 100ECh. 15 - Prob. 101ECh. 15 - Consider the two reactions: O+N2NO+NEa= 315 kJ/mol...Ch. 15 - Anthropologists can estimate the age of a bone or...Ch. 15 - Prob. 104ECh. 15 - Consider the gas-phase reaction: H2(g)+I2(g)2HI(g)...Ch. 15 - Consider the reaction:...Ch. 15 - Prob. 107ECh. 15 - Prob. 108ECh. 15 - A certain substance X decomposes. Fifty percent of...Ch. 15 - Prob. 110ECh. 15 - Prob. 111ECh. 15 - Prob. 112ECh. 15 - Prob. 113ECh. 15 - Prob. 114ECh. 15 - Prob. 115ECh. 15 - Prob. 116ECh. 15 - Phosgene (Cl2CO), a poison gas used in World War...Ch. 15 - The rate of decomposition of N2O3(g) to NO2(g) and...Ch. 15 - At 473 K, for the elementary reaction...Ch. 15 - Prob. 120ECh. 15 - Prob. 121ECh. 15 - A particular reaction, Aproducts has a rate that...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Gaseous azomethane (CH3N2CH3) decomposes to ethane and nitrogen when heated: CH3N2CH3(g) CH3CH3(g) + N2(g) The decomposition of azomethane is a first-order reaction with k = 3.6 104 s1 at 600 K. (a) A sample of gaseous CH3N2CH3 is placed in a flask and heated at 600 K for 150 seconds. What fraction of the initial sample remains after this time? (b) How long must a sample be heated so that 99% of the sample has decomposed?arrow_forwardWhen enzymes are present at very low concentration, their effect on reaction rate can be described by first-order kinetics. Calculate by what factor the rate of an enzyme-catalyzed reaction changes when the enzyme concentration is changed from 1.5 107 M to 4.5 106 M.arrow_forwardAt 573 K, gaseous NO2(g) decomposes, forming NO(g) and O2(g). If a vessel containing NO2(g) has an initial concentration of 1.9 102 mol/L, how long will it take for 75% of the NO2(g) to decompose? The decomposition of NO2(g) is second-order in the reactant and the rate constant for this reaction, at 573 K, is 1.1 L/mol s.arrow_forward
- The decomposition of SO2Cl2 is a first-order reaction: SO2Cl2(g) SO2(g) + Cl2(g) The rate constant for the reaction is 2.8 103 min1 at 600 K. If the initial concentration of SO2Cl2 is 1.24 103 mol/L, how long will it take for the concentration to drop to 0.31 103 mol/L?arrow_forwardHydrogen peroxide, H2O2(aq), decomposes to H2O() and O2(g) in a reaction that is first-order in H2O2 and has a rate constant k = 1.06 103 min1 at a given temperature. (a) How long will it take for 15% of a sample of H2O2 to decompose? (b) How long will it take for 85% of the sample to decompose?arrow_forwardExplain why half-lives are not normally used to describe reactions other than first order.arrow_forward
- The catalyzed decomposition of hydrogen peroxide is first-order in [H2O2]. It was found that the concentration of H2O2 decreased from 0.24 M to 0.060 M over a period of 282 minutes. What is the half-life of H2O2? What is the rate constant for this reaction? What is the initial rate of decomposition at the beginning of this experiment (when [H2O2] = 0.24 M)?arrow_forwardThe reaction of CO(g) + NO2(g) is second-order in NO2 and zeroth-order in CO at temperatures less than 500 K. (a) Write the rate law for the reaction. (b) Determine how the reaction rate changes if the NO2 concentration is halved. (c) Determine how the reaction rate changes if the concentration of CO is doubled.arrow_forwardFormic acid decomposes at 550 C according to the equation HCO2H(g) CO2(g) + H2(g) The reaction follows first-order kinetics. In an experiment, it is determined that 75% of a sample of HCO2H has decomposed in 72 seconds. Determine t, for this reaction.arrow_forward
- Many biochemical reactions are catalyzed by acids. A typical mechanism consistent with the experimental results (in which HA is the acid and X is the reactant) is Step 1: Step 2: Step 3: Derive the rate law from this mechanism. Determine the order of reaction with respect to HA. Determine how doubling the concentration of HA would affect the rate of the reaction.arrow_forwardThe decomposition of ozone is a second-order reaction with a rate constant of 30.6 atm1 s1 at 95 C. 2O3(g)3O2(g) If ozone is originally present at a partial pressure of 21 torr, calculate the length of time needed for the ozone pressure to decrease to 1.0 torr.arrow_forwardThe dimerization of butadiene, C4H6, to form 1,5-cyclooctadiene is a second-order process that occurs when the diene is heated. In an experiment, a sample of 0.0087 mol of C4H6 was heated in a 1.0-L flask. After 600. seconds, 21% of the butadiene had dimerized. Calculate the rate constant for this reaction.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Kinetics: Chemistry's Demolition Derby - Crash Course Chemistry #32; Author: Crash Course;https://www.youtube.com/watch?v=7qOFtL3VEBc;License: Standard YouTube License, CC-BY