A reaction in which A, B, and C react to form products is zero order in A, one-half order in B, and second order in C.
a. Write a rate law for the reaction.
b. What is the overall order of the reaction?
c. By what factor does the reaction rate change if [A] is doubled (and the other reactant concentrations are held constant)?
d. By what factor does the reaction rate change if [B] is doubled (and the other reactant concentrations are held constant)?
e. By what factor does the reaction rate change if [C] is doubled (and the other reactant concentrations are held constant)?
f. By what factor does the reaction rate change if the concentrations of all three reactants are doubled?
Want to see the full answer?
Check out a sample textbook solutionChapter 15 Solutions
Chemistry: Structure and Properties Custom Edition for Rutgers University General Chemistry
- Isomerization of CH3NC occurs slowly when CH3NC is heated. CH3NC(g) CH3CN(g) To study the rate of this reaction at 488 K, data on [CH3NC] were collected at various times. Analysis led to the following graph. (a) What is the rate law for this reaction? (b) What is the equation for the straight line in this graph? (c) Calculate the rate constant for this reaction. (d) How long does it take for half of the sample to isomerize? (e) What is the concentration of CH3NC after 1.0 104 s?arrow_forwardMost reactions occur by a series of steps. The energy profile for a certain reaction that proceeds by a two-step mechanism is On the energy profile, indicate a. the positions of reactants and products. b. the activation energy for the overall reaction. c. E for the reaction. d. Which point on the plot represents the energy of the intermediate in the two-step reaction? e. Which step in the mechanism for this reaction is rate determining, the first or the second step? Explain.arrow_forwardExperiments show that the reaction of nitrogen dioxide with fluorine, 2 NO2(g) + F2(g) —* 2 FNO2(g) has the rate law Rate = *[NO2][FJ The reaction is thought to occur in two steps. Step 1: NO2(g) + F,(g) —* FNO,(g) + F(g) Step 2: NO2(g) + F(g) — FNO2(g) Show that the sum of this sequence of reactions gives the balanced equation for the overall reaction. Which step is rate determining?arrow_forward
- Nitrogen dioxide reacts with carbon monoxide by the overall equation NO2(g)+CO(g)NO(g)+CO2(g) At a particular temperature, the reaction is second order in NO2 and zero order in CO. The rate constant is 0.515 L/(mol s). How much heat energy evolves per second initially from 3.50 L of reaction mixture containing 0.0275 M NO2? See Appendix C for data. Assume the enthalpy change is constant with temperature.arrow_forwardConsider a hypothetical reaction between A and B: A + B products Use the following initial rate data to calculate the rate constant for this reaction. [A] (mol/L) [B] (mol/L) Initial Rate (mol/L s) 0.20 1.0 3.0 0.50 1.0 11.8 2.0 2.0 189.5arrow_forwardThe rate law for a reaction can be determined only from experiment and not from the balanced equation. Two experimental procedures were outlined in Chapter 11. What are these two procedures? Explain how each method is used to determine rate laws.arrow_forward
- The Raschig reaction produces the industrially important reducing agent hydrazine, N2H4, from ammonia, NH3, and hypochlorite ion, OCl−, in basic aqueous solution. A proposed mechanism is Step 1: Step 2: Step 3: What is the overall stoichiometric equation? Which step is rate-limiting? What reaction intermediates are involved? What rate law is predicted by this mechanism?arrow_forwardIf the reaction:A+BC+D is designated as first order, the rate depends on: a.the concentration of only one reactant. b.the concentration of each reactant. c.no specific concentration. d.the temperature only.arrow_forwardCandle wax is a mixture of hydrocarbons. In the reaction of oxygen with candle w ax in Figure 11.2, the rate of consumption of oxygen decreased with time after the flask was covered, and eventually' the flame went out. From the perspective of the kinetic-molecular theory, describe what is happening in the flask. FIGURE 11.2 When a candle burns in a closed container, the flame will diminish and eventually go out. As the amount of oxygen present decreases, the rate of combustion will also decrease. Eventually, the rate of combustion is no longer sufficient to sustain the flame even though there is still some oxygen present in the vessel.arrow_forward
- Kinetics I Consider the hypothetical reaction A(g) + 2B(g) h C(g). The four containers below represent this reaction being run with different initial amounts of A and B. Assume that the volume of each container is 1.0 L. The reaction is second order with respect to A and first order with respect to B. a Based on the information presented in the problem, write the rate law for the reaction. b Which of the containers, W, X, Y, or Z, would have the greatest reaction rate? Justify your answer. c Which of the containers would have the lowest reaction rate? Explain. d If the volume of the container X were increased to 2.0 L, how would the rate of the reaction in this larger container compare to the rate of reaction run in the 1.0-L container X? (Assume that the number of A and B atoms is the same in each case.) e If the temperature in container W were increased, what impact would this probably have on the rate of reaction? Why? f If you want to double the rate of reaction in container X, what are some things that you could do to the concentration(s) of A and B? g In which container would you observe the slowest rate of formation of C? h Assuming that A and B are not in great excess, which would have the greater impact on the rate of reaction in container W: removing a unit of B or removing a unit of A? Explain. i Describe how the rate of consumption of A compares to the rate of consumption of B. If you cannot answer this question, what additional information do you need to provide an answer? j If the product C were removed from the container as it formed, what effect would this have on the rate of the reaction?arrow_forwardThe following statements relate to the reaction for the formation of HI: H2(g) + I2(g) -* 2 HI(g) Rate = it[HJ [I2J Determine which of the following statements are true. If a statement is false, indicate why it is incorrect. The reaction must occur in a single step. This is a second-order reaction overall. Raising the temperature will cause the value of k to decrease. Raising the temperature lowers the activation energy' for this reaction. If the concentrations of both reactants are doubled, the rate will double. Adding a catalyst in the reaction will cause the initial rate to increase.arrow_forwardGiven the reaction 2A+BC+3D, can you write the rate law for this reaction? If so, write the rate law; if not, why?arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning