Chemistry: Structure and Properties Custom Edition for Rutgers University General Chemistry
15th Edition
ISBN: 9781269935678
Author: Nivaldo J. Tro
Publisher: Pearson Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 15, Problem 37E
This graph shows a plot of the
- What is the order of the reaction with respect to A?
- Make a rough sketch of a plot of [A] versus time.
- Write a rate law for the reaction including an estimate for the value of k.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 15 Solutions
Chemistry: Structure and Properties Custom Edition for Rutgers University General Chemistry
Ch. 15 - This graph shows the concentration of the reactant...Ch. 15 - Prob. 2SAQCh. 15 - Prob. 3SAQCh. 15 - Prob. 4SAQCh. 15 - Prob. 5SAQCh. 15 - Prob. 6SAQCh. 15 - Prob. 7SAQCh. 15 - Prob. 8SAQCh. 15 - The rate constant of a reaction is measured at...Ch. 15 - Prob. 10SAQ
Ch. 15 - The mechanism shown here is proposed for the...Ch. 15 - Prob. 12SAQCh. 15 - These images represent the first-order reaction AB...Ch. 15 - Prob. 14SAQCh. 15 - Prob. 15SAQCh. 15 - Explain why lizards become sluggish in cold...Ch. 15 - Why are reaction rates important (both practically...Ch. 15 - Using the idea that reactions occur as a result of...Ch. 15 - Using the idea that reactions occur as a result of...Ch. 15 - What units are typically used to express the rate...Ch. 15 - Why is the reaction rate for reactants defined as...Ch. 15 - Explain the difference between the average rate of...Ch. 15 - Consider a simple reaction in which a reactant A...Ch. 15 - How is the order of a reaction generally...Ch. 15 - For a reaction with multiple reactants, how is the...Ch. 15 - Explain the difference between the rate law for a...Ch. 15 - Write integrated rate laws for zero-order,...Ch. 15 - What does the term half-life mean? Write the...Ch. 15 - How do reaction rates typically depend on...Ch. 15 - Prob. 15ECh. 15 - What is an Arrhenius plot? Explain the...Ch. 15 - Explain the meaning of the orientation factor in...Ch. 15 - Explain the difference between a normal chemical...Ch. 15 - In a reaction mechanism, what is an elementary...Ch. 15 - What are the two requirements for a proposed...Ch. 15 - What is an intermediate within a reaction...Ch. 15 - What is a catalyst? How does a catalyst increase...Ch. 15 - Explain the difference between homogeneous...Ch. 15 - What are the four basic steps involved in...Ch. 15 - What are enzymes? What is the active site of an...Ch. 15 - What is the general two-step mechanism by which...Ch. 15 - Consider the reaction. 2HBr(g)H2(g)+Br2(g) Express...Ch. 15 - Consider the reaction 2N2O(g)2N2(g)+O2(g) Express...Ch. 15 - For the reaction 2A(g)+B(g)3C(g) determine the...Ch. 15 - For the reaction A(g)+12B(g)2C(g) determine the...Ch. 15 - Consider the reaction. Cl2(g)+3F2(g)2ClF3(g)...Ch. 15 - Consider the reaction. 8H2S(g)+4O2(g)8H2O(g)+S8(g)...Ch. 15 - Consider the reaction: C4H8(g)2C2H4(g) The...Ch. 15 - Consider the reaction: NO2(g)NO(g)+12O2(g) The...Ch. 15 - Consider the reaction. H2(g)+Br2(g)2HBr(g) The...Ch. 15 - Consider the reaction. 2H2O2(aq)2H2O(l)+O2(g) The...Ch. 15 - This graph shows a plot of the rate of a reaction...Ch. 15 - This graph shows a plot of the rate of a reaction...Ch. 15 - What are the units of k for each type of reaction?...Ch. 15 - This reaction is first order in N2O5:...Ch. 15 - A reaction in which A, B, and C react to form...Ch. 15 - A reaction in which A, B, and C react to form...Ch. 15 - Consider the tabulated data showing initial rate...Ch. 15 - Consider the tabulated data showing initial rate...Ch. 15 - The tabulated data were collected for this...Ch. 15 - The tabulated data were collected for this...Ch. 15 - Indicate the order of reaction consistent with...Ch. 15 - Indicate the order of reaction consistent with...Ch. 15 - The tabulated data show the concentration of AB...Ch. 15 - The tabulated data show the concentration of N2O5...Ch. 15 - The tabulated data show the concentration of...Ch. 15 - Prob. 52ECh. 15 - This reaction was monitored as a function of time:...Ch. 15 - This reaction was monitored as a function of time:...Ch. 15 - Prob. 55ECh. 15 - Prob. 56ECh. 15 - Prob. 57ECh. 15 - Prob. 58ECh. 15 - The diagram shows the energy of a reaction as the...Ch. 15 - Prob. 60ECh. 15 - Prob. 61ECh. 15 - Prob. 62ECh. 15 - Prob. 63ECh. 15 - The rate constant (k) for a reaction is measured...Ch. 15 - The tabulated data shown here were collected for...Ch. 15 - Prob. 66ECh. 15 - The tabulated data were collected for the...Ch. 15 - Prob. 68ECh. 15 - A reaction has a rate constant of 0.0117/s at...Ch. 15 - A reaction has a rate constant of 0.000122/s at...Ch. 15 - Prob. 71ECh. 15 - Prob. 72ECh. 15 - Prob. 73ECh. 15 - Prob. 74ECh. 15 - Prob. 75ECh. 15 - Prob. 76ECh. 15 - Consider this three-step mechanism for a...Ch. 15 - Prob. 78ECh. 15 - Prob. 79ECh. 15 - Prob. 80ECh. 15 - Suppose that a catalyst lowers the activation...Ch. 15 - The activation barrier for the hydrolysis of...Ch. 15 - The tabulated data were collected for this...Ch. 15 - Prob. 84ECh. 15 - Consider the reaction: A+B+CD The rate law for...Ch. 15 - Consider the reaction: 2O3(g)3O2(g) The rate law...Ch. 15 - At 700 K acetaldehyde decomposes in the gas phase...Ch. 15 - Prob. 88ECh. 15 - Dinitrogen pentoxide decomposes in the gas phase...Ch. 15 - Cyclopropane (C3H6) reacts to form propene (C3H6)...Ch. 15 - Iodine atoms combine to form I2 in liquid hexane...Ch. 15 - Prob. 92ECh. 15 - The reaction AB(aq)A(g)+B(g) is second order in AB...Ch. 15 - The reaction 2H2O2(aq)2H2O(l)+O2(g) is first order...Ch. 15 - Consider this energy diagram: a. How many...Ch. 15 - Consider the reaction in which HCI adds across the...Ch. 15 - The desorption of a single molecular layer of...Ch. 15 - The evaporation of a 120-nm film of n-pentane from...Ch. 15 - Prob. 99ECh. 15 - Prob. 100ECh. 15 - Prob. 101ECh. 15 - Consider the two reactions: O+N2NO+NEa= 315 kJ/mol...Ch. 15 - Anthropologists can estimate the age of a bone or...Ch. 15 - Prob. 104ECh. 15 - Consider the gas-phase reaction: H2(g)+I2(g)2HI(g)...Ch. 15 - Consider the reaction:...Ch. 15 - Prob. 107ECh. 15 - Prob. 108ECh. 15 - A certain substance X decomposes. Fifty percent of...Ch. 15 - Prob. 110ECh. 15 - Prob. 111ECh. 15 - Prob. 112ECh. 15 - Prob. 113ECh. 15 - Prob. 114ECh. 15 - Prob. 115ECh. 15 - Prob. 116ECh. 15 - Phosgene (Cl2CO), a poison gas used in World War...Ch. 15 - The rate of decomposition of N2O3(g) to NO2(g) and...Ch. 15 - At 473 K, for the elementary reaction...Ch. 15 - Prob. 120ECh. 15 - Prob. 121ECh. 15 - A particular reaction, Aproducts has a rate that...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Isomerization of CH3NC occurs slowly when CH3NC is heated. CH3NC(g) CH3CN(g) To study the rate of this reaction at 488 K, data on [CH3NC] were collected at various times. Analysis led to the following graph. (a) What is the rate law for this reaction? (b) What is the equation for the straight line in this graph? (c) Calculate the rate constant for this reaction. (d) How long does it take for half of the sample to isomerize? (e) What is the concentration of CH3NC after 1.0 104 s?arrow_forwardFor the reaction of nitrogen monoxide, NO, with chlorine, Cl2, 2NO(g)+Cl2(g)2NOCl(g) the observed rate law is Rate=k[NO]2[Cl2] What is the reaction order with respect to nitrogen monoxide and with respect to Cl2? What is the overall order?arrow_forwardChlorine dioxide, ClO2, is a reddish-yellow gas that is soluble in water. In basic solution it gives ClO3 and ClO2 ions. 2ClO2(aq)+2OH(aq)ClO3(aq)+ClO2(aq)+H2O To obtain the rate law for this reaction, the following experiments were run and, for each, the initial rate of reaction of ClO2 was determined. Obtain the rate law and the value of the rate constant.arrow_forward
- You are studying the kinetics of the reaction H2(g) + F2(g) 2HF(g) and you wish to determine a mechanism for the reaction. You run the reaction twice by keeping one reactant at a much higher pressure than the other reactant (this lower-pressure reactant begins at 1.000 atm). Unfortunately, you neglect to record which reactant was at the higher pressure, and you forget which it was later. Your data for the first experiment are: Pressure of HF (atm) Time(min) 0 0 0.300 30.0 0.600 65.8 0.900 110.4 1.200 169.1 1.500 255.9 When you ran the second experiment (in which the higher pressure reactant was run at a much higher pressure), you determine the values of the apparent rate constants to be the same. It also turns out that you find data taken from another person in the lab. This individual found that the reaction proceeds 40.0 times faster at 55C than at 35C. You also know, from the energy-level diagram, that there are three steps to the mechanism, and the first step has the highest activation energy. You look up the bond energies of the species involved and they are (in kJ/mol): H8H (432), F8F (154), and H8F (565). a. Sketch an energy-level diagram (qualitative) that is consistent with the one described previously. Hint: See Exercise 106. b. Develop a reasonable mechanism for the reaction. c. Which reactant was limiting in the experiments?arrow_forwardKinetics I Consider the hypothetical reaction A(g) + 2B(g) h C(g). The four containers below represent this reaction being run with different initial amounts of A and B. Assume that the volume of each container is 1.0 L. The reaction is second order with respect to A and first order with respect to B. a Based on the information presented in the problem, write the rate law for the reaction. b Which of the containers, W, X, Y, or Z, would have the greatest reaction rate? Justify your answer. c Which of the containers would have the lowest reaction rate? Explain. d If the volume of the container X were increased to 2.0 L, how would the rate of the reaction in this larger container compare to the rate of reaction run in the 1.0-L container X? (Assume that the number of A and B atoms is the same in each case.) e If the temperature in container W were increased, what impact would this probably have on the rate of reaction? Why? f If you want to double the rate of reaction in container X, what are some things that you could do to the concentration(s) of A and B? g In which container would you observe the slowest rate of formation of C? h Assuming that A and B are not in great excess, which would have the greater impact on the rate of reaction in container W: removing a unit of B or removing a unit of A? Explain. i Describe how the rate of consumption of A compares to the rate of consumption of B. If you cannot answer this question, what additional information do you need to provide an answer? j If the product C were removed from the container as it formed, what effect would this have on the rate of the reaction?arrow_forwardThe Raschig reaction produces the industrially important reducing agent hydrazine, N2H4, from ammonia, NH3, and hypochlorite ion, OCl−, in basic aqueous solution. A proposed mechanism is Step 1: Step 2: Step 3: What is the overall stoichiometric equation? Which step is rate-limiting? What reaction intermediates are involved? What rate law is predicted by this mechanism?arrow_forward
- A reaction has two reactants Q and P. What is the order with respect to each reactant and the overall order of the reaction described by the following rate expressions? (a) rate=k1(b) rate=k2[ P ]2[ Q ] (c) rate=k3[ Q ]2 (d) rate=k4[ P ][ Q ]arrow_forwardAt 573 K, gaseous NO2(g) decomposes, forming NO(g) and O2(g). If a vessel containing NO2(g) has an initial concentration of 1.9 102 mol/L, how long will it take for 75% of the NO2(g) to decompose? The decomposition of NO2(g) is second-order in the reactant and the rate constant for this reaction, at 573 K, is 1.1 L/mol s.arrow_forwardThe reaction NO(g) + 1/2 Cl2(g) NOCl(g) is first-order in [Cl2] and second-order with respect to [NO]. Under a given set of conditions, the initial rate of this reaction is 620 106 mol/L s. What is the rate of this reaction if the concentration of NO is doubled and the concentration of Cl2 is reduced to half the original value? (a) 6.20 106 mol/L s (b) 124 105 mol/L s (c) 2.48 105 mol/L s (d) 4.96 105 mol/L sarrow_forward
- Kinetics II You and a friend are working together in order to obtain as much kinetic information as possible about the reaction A(g)B(g)+C(g). One thing you know before performing the experiments is that the reaction is zero order, first order, or second order with respect to A. Your friend goes off, runs the experiment, and brings back the following graph. a After studying the curve of the graph, she declares that the reaction is second order, with a corresponding rate law of Rate = k[A]2. Judging solely on the basis of the information presented in this plot, is she correct in her statement that the reaction must be second order? Here are some data collected from her experiment: Time (s) [A] 0.0 1.0 1.0 0.14 3.0 2.5 103 5.0 4.5 105 7.0 8.3 107 b The half-life of the reaction is 0.35 s. Do these data support the reaction being second order, or is it something else? Try to reach a conclusive answer without graphing the data. c What is the rate constant for the reaction? d The mechanism for this reaction is found to be a two-step process, with intermediates X and Y. The first step of the reaction is the rate-determining step. Write a possible mechanism for the reaction. e You perform additional experiments and find that the rate constant doubles in value when you increase the temperature by 10oC. Your lab partner doesnt understand why the rate constant changes in this manner. What could you say to your partner to help her understand? Feel free to use figures and pictures as part of your explanation.arrow_forwardNitryl fluoride is an explosive compound that can be made by oxidizing nitrogen dioxide with fluorine: 2 NO2(g) + F2(g) → 2 NO2F(g) Several kinetics experiments, all done at the same temperature and involving formation of nitryl fluoride, are summarized in this table: Write the rate law for the reaction. Determine what the order of the reaction is with respect to each reactant and each product. Calculate the rate constant k and express it in appropriate units.arrow_forwardA reaction has two reactants X and Y. What is the order with respect to each reactant and the overall order of the reaction described by the following rate expressions? (a) rate=k1[ X ][ Y ]2 (b) rate=k2[ X ]2 (c) rate=k3[ X ][ Y ] (d) rate=k4arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Kinetics: Initial Rates and Integrated Rate Laws; Author: Professor Dave Explains;https://www.youtube.com/watch?v=wYqQCojggyM;License: Standard YouTube License, CC-BY