Concept explainers
Interpretation:
The amount of energy gained by the sample when the temperature is changed from
Concept introduction:
The amount of energy required to change the state of a substance is known as enthalpy. It is the difference in the energy of the final and initial state of a substance. The negative and positive sign of enthalpy indicates the energy released and energy absorbed, respectively, during the phase change.
Answer to Problem 93E
The amount of energy gained by the sample when the temperature is changed from
Explanation of Solution
Three stages are involved when the temperature of ice sample is raised from
The amount of energy required to raise the temperature of ice from
Where,
•
•
•
•
The specific heat of ice is
Substitute the mass, final, initial temperature and specific heat of ice in equation (1).
The amount of energy required to melt a solid is calculated by the formula shown below.
Where,
•
The heat of fusion of water is
Substitute the mass and heat of fusion in equation (2).
The amount of energy required to raise the temperature of water from
Where,
•
•
•
•
The specific heat of water is
Substitute the mass, final, initial temperature and specific heat of water in equation (3).
The total amount of energy sample gained when temperature is changed from
Convert
The amount of energy sample gained when temperature is changed from
Want to see more full solutions like this?
Chapter 15 Solutions
Introductory Chemistry: An Active Learning Approach
- Don't used hand raitingarrow_forwardDon't used hand raitingarrow_forwardIf a high molecular weight linear polyethylene is chlorinated by inducing the substitution of chlorine atoms by hydrogen, if 5% of all hydrogen atoms are replaced, what approximate percentage of chlorine by weight would the product have?arrow_forward
- O Macmillan Learning Chemistry: Fundamentals and Principles Davidson presented by Macmillan Learning Poly(ethylene terephthalate), known as PET or industrially as Dacron, is a polyester synthesized through a condensation reaction between two bifunctional monomers. The monomers, ethylene glycol and terepthalic acid, are given. Add bonds and remove atoms as necessary to show the structure of a two repeat unit portion of a longer polymer chain of PET. You may need to zoom out to see the complete structure of all four monomer units. Select Draw / || | C H 0 3 © Templates More ° ° ° || C CC - OH HO OH HOC - C Erase CC OH HO C C 〃 C H₂ Q2Qarrow_forwardc) + H₂Oarrow_forward으 b) + BF. 3 H2Oarrow_forward
- Q4: Draw the product of each Lewis acid-bas reaction. Label the electrophile and nucleophile. b) S + AICI 3 + BF 3arrow_forwardQ1 - What type(s) of bonding would be expected for each of the following materials: solid xenon, calcium fluoride (CaF2), bronze, cadmium telluride (CdTe), rubber, and tungsten? Material solid xenon CaF2 bronze CdTe rubber tungsten Type(s) of bonding Q2- If the atomic radius of lead is 0.175 nm, calculate the volume of its unit cell in cubic meters.arrow_forwardDetermine the atomic packing factor of quartz, knowing that the number of Si atoms per cm3 is 2.66·1022 and that the atomic radii of silicon and oxygen are 0.038 and 0.117 nm.arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning