Concept explainers
A small business makes cookies and sells them at the farmer’s market. The fixed monthly cost for use of a Health Department-approved kitchen and rental space at the farmer's market is
a. Write a linear cost function representing the cost
b. Write a linear revenue function representing the revenue
c. Write a linear profit function representing the profit for producing and selling
d. Determine the number of cookies (in dozens) that must be produced and sold for a monthly profit.
e. If 150 dozen cookies are sold in a given month, how much money will the business make or lose?
Want to see the full answer?
Check out a sample textbook solutionChapter 1 Solutions
Precalculus
Additional Math Textbook Solutions
Calculus: Early Transcendentals (2nd Edition)
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
A First Course in Probability (10th Edition)
Basic Business Statistics, Student Value Edition
Pre-Algebra Student Edition
Algebra and Trigonometry (6th Edition)
- If you graph a revenue and cost function, explain how to determine in what regions there is profit.arrow_forwardIf you are performing a break-even analysis for a business and their cost and revenue equations are dependent, explain what this means for the company's profit margins.arrow_forwardThe manufacturer of a weight training bench spends $120 to build each bench and sells them for $170. The manufacturer also has fixed costs each month of $150,000. (a) Find the cost function C when x benches are manufactured. (b) Find the revenue function R when x benches are sold. (c) Show the break-even point by graphing both the Revenue and Cost functions on the same grid. (d) Find the break-even point. Interpret what the break-even point means.arrow_forward
- Sales Barnes & Noble had annual sales of $6.8 billion in 2013 and $6.1 billion in 2015. Use the Midpoint Formula to estimate the sales in 2014. Assume that the annual sales followed a linear pattern.arrow_forwardThe manufacturer of an energy drink spends $1.20 to make each drink and sells them for $2. The manufacturer also has fixed costs each month of $8,000. (a) Find the cost function C when x energy drinks aremanufactured. (b) Find the revenue function R when x drinks are sold. (c) Show the break-even point by graphing both the Revenue and Cost functions on the same grid. (d) Find the break-even point. Interpret what the breakeven point means.arrow_forwardUse your schools library, the Internet, or some other reference source to find the real-life applications of constrained optimization.arrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageTrigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage Learning
- College Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage LearningBig Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin HarcourtAlgebra for College StudentsAlgebraISBN:9781285195780Author:Jerome E. Kaufmann, Karen L. SchwittersPublisher:Cengage Learning