Biochemistry
8th Edition
ISBN: 9781285429106
Author: Campbell, Mary K., FARRELL, Shawn O.
Publisher: Cengage Learning,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 15, Problem 46RE
Interpretation Introduction
Interpretation: Remark on the free energy of hydrolysis of the phosphate bond of ATP in comparison to the other organophosphorus compounds.
Concept introduction:
Certain compounds (ATP, organophosphates, etc.) undergo hydrolysis, they release energy due to the difference in the bond energy between the reactant and products. This energy varies according to the given conditions.
In case of ATP and other organophosphates such as sugar phosphates, creatine phosphates, hydrolysis of specific bond releases a useful amount of energy.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
How does a voltage-gated sodium channel work? Specifically, how and why does a change in voltage trigger their opening? Please be detailed
When sodium ions enter a neuron during depolarization, they trigger the opening of additional voltage-gated sodium channels nearby, creating a positive feedback loop where the influx of sodium ions further depolarizes the membrane, causing even more sodium channels to open and allowing more sodium ions to enter the cell, thus sustaining the depolarization process until the action potential peaks. But how and why exactly does the influx of sodium ions trigger more sodium channels to let in more sodium? Please explain
Draw the chemical structure of the
tripeptide, HEL (L - amino acids), at
pH =
7.0. Calculate isoelectric point
Chapter 15 Solutions
Biochemistry
Ch. 15 - RECALL Is there a connection between the...Ch. 15 - REFLECT AND APPLY What do the following indicators...Ch. 15 - REFLECT AND APPLY Consider the reaction...Ch. 15 - RECALL What conditions are necessary for the...Ch. 15 - REFLECT AND APPLY Why is it important that energy...Ch. 15 - RECALL Why is it necessary to define a modified...Ch. 15 - RECALL Which of the following statements is (are)...Ch. 15 - RECALL How can you tell if the standard Gibbs free...Ch. 15 - RECALL Can the thermodynamic property G be used to...Ch. 15 - MATHEMATICAL Calculate G for the following values...
Ch. 15 - Prob. 11RECh. 15 - MATHEMATICAL Consider the reaction AB+C, where...Ch. 15 - Prob. 13RECh. 15 - MATHEMATICAL The G for the reaction Citrate ...Ch. 15 - MATHEMATICAL If a reaction can be written AB, and...Ch. 15 - Prob. 16RECh. 15 - Prob. 17RECh. 15 - Prob. 18RECh. 15 - RECALL Organize the following words into two...Ch. 15 - Prob. 20RECh. 15 - REFLECT AND APPLY Would you expect the production...Ch. 15 - Prob. 22RECh. 15 - REFLECT AND APPLY Adult humans synthesize large...Ch. 15 - RECALL Identify the molecules oxidized and reduced...Ch. 15 - RECALL For each of the reactions in Question 24,...Ch. 15 - Prob. 26RECh. 15 - RECALL What is the structural difference between...Ch. 15 - RECALL How does the difference between NADH and...Ch. 15 - RECALL Which coenzyme is a reactant in the...Ch. 15 - Prob. 30RECh. 15 - Prob. 31RECh. 15 - Prob. 32RECh. 15 - REFLECT AND APPLY The following half reactions...Ch. 15 - Prob. 34RECh. 15 - REFLECT AND APPLY There is a reaction in...Ch. 15 - REFLECT AND APPLY There is a reaction in which...Ch. 15 - Prob. 37RECh. 15 - Prob. 38RECh. 15 - Prob. 39RECh. 15 - Prob. 40RECh. 15 - MATHEMATICAL Using the data in Table 15.1,...Ch. 15 - Prob. 42RECh. 15 - Prob. 43RECh. 15 - MATHEMATICAL The standard free-energy change for...Ch. 15 - Prob. 45RECh. 15 - Prob. 46RECh. 15 - Prob. 47RECh. 15 - REFLECT AND APPLY Would you expect an increase or...Ch. 15 - REFLECT AND APPLY Explain and show why...Ch. 15 - Prob. 50RECh. 15 - Prob. 51RECh. 15 - Prob. 52RECh. 15 - Prob. 53RECh. 15 - REFLECT AND APPLY Why are thioesters considered...Ch. 15 - Prob. 55RECh. 15 - REFLECT AND APPLY This is a conjectural question:...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biochemistry and related others by exploring similar questions and additional content below.Similar questions
- How would I draw this?arrow_forwardCalculate the standard change in Gibbs free energy, AGrxn, for the given reaction at 25.0 °C. Consult the table of thermodynamic properties for standard Gibbs free energy of formation values. NH,Cl(s) →NH; (aq) + C1 (aq) AGrxn -7.67 Correct Answer Determine the concentration of NH+ (aq) if the change in Gibbs free energy, AGrxn, for the reaction is -9.27 kJ/mol. 6.49 [NH+] Incorrect Answer kJ/mol Marrow_forwardWhat are some topics of interest that neurotoxicologists study? For example, toxin-induced seizures, brain death, and such along those lines?arrow_forward
- Could you help me with the explanation of the answer to exercise 15, chapter 1 of Lehinger Question Nombramiento de estereoisómeros con dos carbonos quirales utilizando el sistema RS(R,R)El isómero del metilfenidato (Ritalin) se utiliza para tratar el trastorno por déficit de atención con hiperactividad (TDAH).(S,S)El isómero es un antidepresivo. Identifique los dos carbonos quirales en la siguiente estructura. ¿Es este el(R,R)o el(S,S)¿isómero? Dibuja el otro isómero. Nombramiento de estereoisómeros con dos carbonos quirales utilizando el sistema RS(R,R)El isómero del metilfenidato (Ritalin) se utiliza para tratar el trastorno por déficit de atención con hiperactividad (TDAH).(S,S)El isómero es un antidepresivo.arrow_forwardThe reaction A+B → C + D AG°' = -7.3 kcal/mol can be coupled with which of the following unfavorable reactions to drive it forward? A. EFG+HAG° = 5.6 kcal/mol. B. J+KZ+A AG° = 2.3 kcal/mol. C. P+RY+DAG° = 8.2 kcal/mol. D. C + T → V + W AG°' = -5.9 kcal/mol. E. AN→ Q+KAG°' = 4.3 kcal/mol.arrow_forwardWhat would be the toxicological endpoints for neurotoxicity?arrow_forward
- What are "endpoints" in toxicology exactly? Please give an intuitive easy explanationarrow_forwardFura-2 Fluorescence (Arbitrary Unit) 4500 4000 3500 3000 2500 2000 1500 1000 500 [Ca2+]=2970nM, 25°C [Ca2+] 2970nM, 4°C [Ca2+]=0.9nM, 25°C [Ca2+] = 0.9nM, 4°C 0 260 280 300 340 360 380 400 420 440 Wavelength (nm) ← < The figure on the LHS shows the excitation spectra of Fura-2 (Em = 510 nm) in 2 solutions with two different Ca2+ ion concentration as indicated. Except for temperature, the setting for excitation & signal acquisition was identical.< ப a) The unit in Y-axis is arbitrary (unspecified). Why? < < b) Compare & contrast the excitation wavelength of the Isosbestic Point of Fura-2 at 25 °C & 4 °C. Give a possible reason for the discrepancy. < c) The fluorescence intensity at 25 °C & 4 °C are different. Explain why with the concept of electronic configuration. <arrow_forwarddraw in the structure of each amino acid (as L-amino acids) using the Fischer projection style. an example has been included. Draw the structure for glycine, alanine, valine, isoleucine, methionine, proline, phenylalanine, tryptophan, serine, threonine, asparagine, glutamine, lysine, arginine, aspartic acid, glutamic acid, histidine, tyrosine, cysteinearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- BiochemistryBiochemistryISBN:9781305961135Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougalPublisher:Cengage Learning
Biochemistry
Biochemistry
ISBN:9781305961135
Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougal
Publisher:Cengage Learning
Biomolecules - Protein - Amino acids; Author: Tutorials Point (India) Ltd.;https://www.youtube.com/watch?v=ySNVPDHJ0ek;License: Standard YouTube License, CC-BY