
Consider the following equilibrium:
COBr2(g) ⇄ CO(g) + Br2(g) Kc = 0.190 at 73 °C
- (a) A 0.50 mol sample of COBr2 is transferred to a 9.50-L flask and heated until equilibrium is attained. Calculate the equilibrium concentrations of each species.
- (b) The volume of the container is decreased to 4.5 L and the system allowed to return to equilibrium. Calculate the new equilibrium concentrations. (Hint: The calculation will be easier if you view this as a new problem with 0.5 mol of COBr2 transferred to a 4.5-L flask.)
- (c) What is the effect of decreasing the container volume from 9.50 L to 4.50 L?
(a)

Interpretation:
The equilibrium concentration of each species in the reaction
Concept Introduction:
Equilibrium constant in terms of concentration
Le Chatelier’s principle: If an equilibrium is disturbed by changing conditions, the system will moves the equilibrium to reverse the change.
Factor’s that effect chemical equilibria:
Concentration – Equilibrium will be affected by changing the concentration of reactant or product. If we increase the concentration of reactant system will try to reverse the change by favouring forward reaction and thus increase the concentration of products. Like wise adding products increase yield of reactants.
Temperature – When the temperature increases equilibrium will shift in the endothermic direction, in the direction that absorbs heat. When the temperature decreases equilibrium will shift in the exothermic direction, in the direction that releases heat.
Pressure – If the reaction consists of only liquid and solid reactants and products, pressure has no effect in the equilibrium.
In gas reactions if the number of moles has no change then there will be no effect by pressure on equilibrium.
If pressure increases (volume decreases) then equilibrium will shift to the direction having less number of molecules and if pressure decreases (volume increases) system will shift to the direction having more number of molecules.
Answer to Problem 40GQ
The equilibrium concentration of each species when the volume is
Explanation of Solution
To determine:
The equilibrium concentration of each species in the reaction
Given:
(b)

Interpretation:
The equilibrium concentration of each species in the reaction
Concept Introduction:
Equilibrium constant in terms of concentration
Le Chatelier’s principle: If an equilibrium is disturbed by changing conditions, the system will moves the equilibrium to reverse the change.
Factor’s that effect chemical equilibria:
Concentration – Equilibrium will be affected by changing the concentration of reactant or product. If we increase the concentration of reactant system will try to reverse the change by favouring forward reaction and thus increase the concentration of products. Like wise adding products increase yield of reactants.
Temperature – When the temperature increases equilibrium will shift in the endothermic direction, in the direction that absorbs heat. When the temperature decreases equilibrium will shift in the exothermic direction, in the direction that releases heat.
Pressure – If the reaction consists of only liquid and solid reactants and products, pressure has no effect in the equilibrium.
In gas reactions if the number of moles has no change then there will be no effect by pressure on equilibrium.
If pressure increases (volume decreases) then equilibrium will shift to the direction having less number of molecules and if pressure decreases (volume increases) system will shift to the direction having more number of molecules.
Answer to Problem 40GQ
The equilibrium concentration of each species when the volume is
Explanation of Solution
To determine:
The equilibrium concentration of each species in the reaction
Given:
(c)

Interpretation:
The equilibrium concentration of each species in the reaction
Concept Introduction:
Equilibrium constant in terms of concentration
Le Chatelier’s principle: If an equilibrium is disturbed by changing conditions, the system will moves the equilibrium to reverse the change.
Factor’s that effect chemical equilibria:
Concentration – Equilibrium will be affected by changing the concentration of reactant or product. If we increase the concentration of reactant system will try to reverse the change by favouring forward reaction and thus increase the concentration of products. Like wise adding products increase yield of reactants.
Temperature – When the temperature increases equilibrium will shift in the endothermic direction, in the direction that absorbs heat. When the temperature decreases equilibrium will shift in the exothermic direction, in the direction that releases heat.
Pressure – If the reaction consists of only liquid and solid reactants and products, pressure has no effect in the equilibrium.
In gas reactions if the number of moles has no change then there will be no effect by pressure on equilibrium.
If pressure increases (volume decreases) then equilibrium will shift to the direction having less number of molecules and if pressure decreases (volume increases) system will shift to the direction having more number of molecules.
Answer to Problem 40GQ
The effect of decreasing volume is explained according to Le Chatelier’s principle.
Explanation of Solution
To determine:
The effect of decreasing volume in equilibrium
The equilibrium concentrations of the species with different volumes are calculated.
When the volume reduces from
According to Le Chatelier’s principle ,if an equilibrium is disturbed by changing conditions, the system will moves the equilibrium to reverse the change.
In gas reactions if the number of moles has no change then there will be no effect by pressure on equilibrium.
If volume decreases then equilibrium will shift to the direction having less number of molecules and if volume increases system will shift to the direction having more number of molecules.
Here volume is reduced and as a result, equilibrium will shift in the direction that has less number of moles.
Therefore, for the above reaction equilibrium will shift to left side and thus concentration of
Conclusion:
The equilibrium concentration of each species in the reaction
Want to see more full solutions like this?
Chapter 15 Solutions
CHEMISTRY+CHEM...HYBRID ED.(LL)>CUSTOM<
Additional Science Textbook Solutions
Essentials of Human Anatomy & Physiology (12th Edition)
Organic Chemistry
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
Brock Biology of Microorganisms (15th Edition)
- (15 pts) Consider the molecule B2H6. Generate a molecular orbital diagram but this time using a different approach that draws on your knowledge and ability to put concepts together. First use VSEPR or some other method to make sure you know the ground state structure of the molecule. Next, generate an MO diagram for BH2. Sketch the highest occupied and lowest unoccupied MOs of the BH2 fragment. These are called frontier orbitals. Now use these frontier orbitals as your basis set for producing LGO's for B2H6. Since the BH2 frontier orbitals become the LGOS, you will have to think about what is in the middle of the molecule and treat its basis as well. Do you arrive at the same qualitative MO diagram as is discussed in the book? Sketch the new highest occupied and lowest unoccupied MOs for the molecule (B2H6).arrow_forwardQ8: Propose an efficient synthesis of cyclopentene from cyclopentane.arrow_forwardQ7: Use compound A-D, design two different ways to synthesize E. Which way is preferred? Please explain. CH3I ONa NaOCH 3 A B C D E OCH3arrow_forward
- Predict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forward(10 pts) The density of metallic copper is 8.92 g cm³. The structure of this metal is cubic close-packed. What is the atomic radius of copper in copper metal?arrow_forwardPredict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forward
- Predict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forwardQ3: Rank the following compounds in increasing reactivity of E1 and E2 eliminations, respectively. Br ca. go do A CI CI B C CI Darrow_forwardQ5: Predict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2). H₂O דיי "Br KN3 CH3CH2OH NaNH2 NH3 Page 3 of 6 Chem 0310 Organic Chemistry 1 HW Problem Sets CI Br excess NaOCH 3 CH3OH Br KOC(CH3)3 DuckDuckGarrow_forward
- Q4: Circle the substrate that gives a single alkene product in a E2 elimination. CI CI Br Brarrow_forwardPlease calculate the chemical shift of each protonsarrow_forwardQ1: Answer the questions for the reaction below: ..!! Br OH a) Predict the product(s) of the reaction. b) Is the substrate optically active? Are the product(s) optically active as a mix? c) Draw the curved arrow mechanism for the reaction. d) What happens to the SN1 reaction rate in each of these instances: 1. Change the substrate to Br 'CI 2. Change the substrate to 3. Change the solvent from 100% CH3CH2OH to 10% CH3CH2OH + 90% DMF 4. Increase the substrate concentration by 3-fold.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning





