The reaction of hydrogen and iodine to give hydrogen iodide has an equilibrium constant, Kc, of 56 at 435 °C.
- (a) What is the value of Kp?
- (b) Suppose you mix 0.045 mol of H2 and 0.045 mol of I2 in a 10.0-L flask at 425 °C. What is the total pressure of the mixture before and after equilibrium is achieved?
- (c) What is the partial pressure of each gas at equilibrium?
(a)
Interpretation:
The value of
Concept Introduction:
Equilibrium constant in terms of pressure
The activity of solid substance will not appear in equilibrium and numerically it is considered as one.
Answer to Problem 55GQ
The value of
Explanation of Solution
Given:
Using the equation
(b)
Interpretation:
The total pressure of the mixture before and after equilibrium has to be calculated.
Concept Introduction:
Equilibrium constant in terms of pressure
The activity of solid substance will not appear in equilibrium and numerically it is considered as one.
Answer to Problem 55GQ
The total pressure of the mixture before equilibrium and after equilibrium is
Explanation of Solution
Given:
From the reaction
Total pressure can be calculated using ideal gas equation
Total pressure of the mixture is
The total pressure before and after equilibrium will be the same since the amount of gas has not changed.
(c)
Interpretation:
The partial pressure of each gas in the mixture has to be calculated.
Concept Introduction:
Equilibrium constant in terms of pressure
The activity of solid substance will not appear in equilibrium and numerically it is considered as one.
Answer to Problem 55GQ
The partial pressures of each gas in the mixture is
Explanation of Solution
Given that initially
For the reaction
Want to see more full solutions like this?
Chapter 15 Solutions
CHEMISTRY+CHEM...HYBRID ED.(LL)>CUSTOM<
Additional Science Textbook Solutions
Biology: Life on Earth (11th Edition)
Laboratory Manual For Human Anatomy & Physiology
Human Anatomy & Physiology (2nd Edition)
Organic Chemistry (8th Edition)
- Pleasssssseeee solve this question in cheeemsirty, thankss sirarrow_forwardThe Ksp for lead iodide ( Pbl₂) is 1.4 × 10-8. Calculate the solubility of lead iodide in each of the following. a. water Solubility = mol/L b. 0.17 M Pb(NO3)2 Solubility = c. 0.017 M NaI mol/L Solubility = mol/Larrow_forwardPleasssssseeee solve this question in cheeemsirty, thankss sirarrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781285199030Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning