(a)
Interpretation:
The order of the reaction should be determined with respect to oxygen atoms.
Concept Introduction:
Rate Law can be expressed as an integrated rate law and a differential rate law.
Differential Rate Law: This describes the change in the concentrations of reactant as a function of time.
Integrated Rate Law: This describes the initial concentrations and the measured concentration of one or more reactants as a function of time.
(a)

Answer to Problem 36E
The reaction is first order reaction with respect to oxygen.
Explanation of Solution
Given information:
Data is given as:
Time (s) | |
0 | |
The order of reaction can be determined by plotting the graph between
For first order reaction:
For second order reaction:
For zero order reaction:
The given reaction is:
Now, if the reaction is first order with respect to oxygen, then the integrated law is expressed as:
If the reaction is second order with respect to oxygen, then the integrated law is expressed as:
If the reaction is zero order with respect to oxygen, then the integrated law is expressed as:
Time (s) | ||
0 | 22.3327 | |
21.36512 | ||
20.3376 | ||
19.33697 |
The graph between
The graph between
The graph between
From the above graphs, it is clear that the reaction is first order reaction with respect to oxygen as the graph is straight line graph.
(b)
Interpretation:
The overall rate law and value of rate constant should be calculated.
Concept Introduction:
Rate Law can be expressed as an integrated rate law and a differential rate law.
Differential Rate Law: This describes the change in the concentrations of reactant as a function of time.
Integrated Rate Law: This describes the initial concentrations and the measured concentration of one or more reactants as a function of time.
(b)

Answer to Problem 36E
Rate law is expressed as:
Since, concentration of nitrogen dioxide is more in comparison to oxygen, thus, rate law is written as:
Rate constant for first order reaction is
Explanation of Solution
Given information:
Data is given as:
Time (s) | |
0 | |
The order of reaction can be determined by plotting the graph between
For first order reaction:
For second order reaction:
For zero order reaction:
The given reaction is:
Rate Law for first is expressed as:
Since, it is given that nitrogen dioxide is present in large amount in comparison to oxygen.
Thus, rate law is expressed as:
Where,
Now, from the graph slope is given as:
Slope =
Put the values from graph,
Slope =
Slope =
Thus, value of
Now,
Put the values,
Thus, rate constant for first order reaction is
Want to see more full solutions like this?
Chapter 15 Solutions
Chemical Principles
- Phenol is the starting material for the synthesis of 2,3,4,5,6-pentachlorophenol, known al-ternatively as pentachlorophenol, or more simply as penta. At one time, penta was widely used as a wood preservative for decks, siding, and outdoor wood furniture. Draw the structural formula for pentachlorophenol and describe its synthesis from phenol.arrow_forward12 Mass Spectrometry (d) This unknown contains oxygen, but it does not show any significant infrared absorption peaks above 3000 cm . 59 100- BO 40 Relative Abundance M(102) - 15 20 25 30 35 40 45 50 5 60 65 70 75 80 85 90 95 100 105 mizarrow_forwardDraw a Haworth projection of a common cyclic form of this monosaccharide: H HO H HO H HO H H -OH CH2OH Click and drag to start drawing a structure. Х : Darrow_forward
- : Draw the structure of valylasparagine, a dipeptide made from valine and asparagine, as it would appear at physiological pH. Click and drag to start drawing a structure. P Darrow_forwardDraw the Haworth projection of α-L-mannose. You will find helpful information in the ALEKS Data resource. Click and drag to start drawing a structure. : ཊི Х Darrow_forwardDraw the structure of serine at pH 6.8. Click and drag to start drawing a structure. : d كarrow_forward
- Take a look at this molecule, and then answer the questions in the table below it. CH2OH H H H OH OH OH CH2OH H H H H OH H H OH H OH Is this a reducing sugar? yes α β ロ→ロ no ☑ yes Does this molecule contain a glycosidic bond? If you said this molecule does contain a glycosidic bond, write the symbol describing it. O no 0+0 If you said this molecule does contain a glycosidic bond, write the common names (including anomer and enantiomer labels) of the molecules that would be released if that bond were hydrolyzed. If there's more than one molecule, separate each name with a comma. ☐arrow_forwardAnswer the questions in the table below about this molecule: H₂N-CH₂ -C—NH–CH–C—NH–CH—COO- CH3 CH CH3 What kind of molecule is this? 0= CH2 C If you said the molecule is a peptide, write a description of it using 3-letter codes separated ☐ by dashes. polysaccharide peptide amino acid phospolipid none of the above Хarrow_forwardDraw a Haworth projection of a common cyclic form of this monosaccharide: CH₂OH C=O HO H H -OH H OH CH₂OH Click and drag to start drawing a structure. : ☐ Х S '☐arrow_forward
- Nucleophilic Aromatic Substitution 22.30 Predict all possible products formed from the following nucleophilic substitution reactions. (a) (b) 9 1. NaOH 2. HCI, H₂O CI NH₁(!) +NaNH, -33°C 1. NaOH 2. HCl, H₂Oarrow_forwardSyntheses 22.35 Show how to convert toluene to these compounds. (a) -CH,Br (b) Br- -CH3 22.36 Show how to prepare each compound from 1-phenyl-1-propanone. 1-Phenyl-1-propanone ہتی. Br. (b) Br (racemic) 22.37 Show how to convert ethyl benzene to (a) 2,5-dichlorobenzoic acid and (b) 2,4-dichlorobenzoic acid. 22.38 Show reagents and conditions to bring about the following conversions. (a) 9 NH2 8 CO₂H NH2 CO₂Et (d) NO2 NH2 S NH₂ NO2 CHS CHarrow_forwardive the major organic product(s) of each of the following reactions or sequences of reactions. Show all rant stereochemistry. [10 only] A. B. NaN3 1. LiAlH4, ether Br 2. H₂O CH3 HNO3 H₂/Pt H₂SO ethanol C. 0 0 CH3CC1 NaOH NHCCH AICI H₂O . NH₂ CH3CH2 N CH2CH3 + HCI CH₂CH 3 1. LIAIH, THE 2. H₂Oarrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning

