(a)
Interpretation:
The rate law for the reaction should be determined by using concentration versus time.
Concept Introduction:
Rate Law can be expressed as an integrated rate law and a differential rate law.
Differential Rate Law: This describes the change in the concentrations of reactant as a function of time.
Integrated Rate Law: This describes the initial concentrations and the measured concentration of one or more reactants as a function of time.
(a)

Answer to Problem 136MP
Rate law for the reaction is:
Explanation of Solution
Given information:
Data is given as:
Time (s) | Experiment 1 | Experiment 2 |
0 | ||
10 | ||
20 | ||
30 | ? | |
40 |
In experiment 1, concentration of B is 10.0 M and in experiment 2, concentration of B is
20.0 M.
The order of reaction can be determined by the concentration and time data.
The general expression of rate law is expressed as:
Where, m and n are the experimentally determined values.
In both experiments, the concentration of B is more than the concentration of A, thus
In first experiment, 40 seconds are required to undergo one half-life of reactant A. In experiment 2, the half-life decreases by factor 4 as concentration of B doubles.
This observation implies that the reaction is second order with respect to B whereas the reaction is first order with respect to A as the
Thus, rate law for the reaction is expressed as:
(b)
Interpretation:
The value of rate constant including units should be calculated.
Concept Introduction:
Rate Law can be expressed as an integrated rate law and a differential rate law.
Differential Rate Law: This describes the change in the concentrations of reactant as a function of time.
Integrated Rate Law: This describes the initial concentrations and the measured concentration of one or more reactants as a function of time.
The proportionality coefficient which relates the rate of
(b)

Answer to Problem 136MP
Rate constant =
Explanation of Solution
Given information:
Data is given as:
Time (s) | Experiment 1 | Experiment 2 |
0 | ||
10 | ||
20 | ||
30 | ? | |
40 |
In experiment 1, concentration of B is 10.0 M and in experiment 2, concentration of B is
20.0 M.
In second experiment, the concentration decreases by half every ten seconds. As the reaction is first order with respect A, the below mathematical expression is used for determining value of rate of constant (k’).
Put the value of half-life,
Rate law for the given reaction is expressed as:
Since, concentration of B is more in comparison to A, thus, rate law is written as:
Where,
Put the values,
(c)
Interpretation:
The concentration of
Concept Introduction:
Rate Law can be expressed as an integrated rate law and a differential rate law.
Differential Rate Law: This describes the change in the concentrations of reactant as a function of time.
Integrated Rate Law: This describes the initial concentrations and the measured concentration of one or more reactants as a function of time.
The concentration of a reaction at any time is calculated by the values of concentration and time or by drawing the graph between concentration and time.
The rate constant expression for first order reaction is:
(c)

Answer to Problem 136MP
Concentration of A for first experiment at t = 30 s is
Explanation of Solution
Given information:
Data is given as:
Time (s) | Experiment 1 | Experiment 2 |
0 | ||
10 | ||
20 | ||
30 | ? | |
40 |
In experiment 1, concentration of B is 10.0 M and in experiment 2, concentration of B is
20.0 M.
Since, the reaction is first order with respect to A, thus, the rate constant expression is:
Where, k = rate constant
t = time
Co = Initial concentration
C = Concentration at given time.
Put the values from experiment 1,
Now, at t = 30 s
Put the values,
Thus, concentration of A for first experiment at t = 30 s is
(d)
Interpretation:
Among the given three mechanisms, the best mechanism for the given reaction should be determined. Also, reason should be explained for excluding any mechanism along with if all the three mechanism are equally good, reason should be explained.
Concept Introduction:
Rate Law can be expressed as an integrated rate law and a differential rate law.
Differential Rate Law: This describes the change in the concentrations of reactant as a function of time.
Integrated Rate Law: This describes the initial concentrations and the measured concentration of one or more reactants as a function of time.
(d)

Answer to Problem 136MP
The best mechanism is first mechanism.
Explanation of Solution
Given information:
The given reaction is:
For the given
Among the given mechanisms, first and third mechanisms give same rate law to the rate law of the given reaction. Thus, both first and third mechanism is possible. In case of second mechanism, rate law is not same to the rate law of given reaction.
Also, third mechanism is very rare to takes place. Thus, best mechanism is first mechanism.
Want to see more full solutions like this?
Chapter 15 Solutions
Chemical Principles
- Phenol is the starting material for the synthesis of 2,3,4,5,6-pentachlorophenol, known al-ternatively as pentachlorophenol, or more simply as penta. At one time, penta was widely used as a wood preservative for decks, siding, and outdoor wood furniture. Draw the structural formula for pentachlorophenol and describe its synthesis from phenol.arrow_forward12 Mass Spectrometry (d) This unknown contains oxygen, but it does not show any significant infrared absorption peaks above 3000 cm . 59 100- BO 40 Relative Abundance M(102) - 15 20 25 30 35 40 45 50 5 60 65 70 75 80 85 90 95 100 105 mizarrow_forwardDraw a Haworth projection of a common cyclic form of this monosaccharide: H HO H HO H HO H H -OH CH2OH Click and drag to start drawing a structure. Х : Darrow_forward
- : Draw the structure of valylasparagine, a dipeptide made from valine and asparagine, as it would appear at physiological pH. Click and drag to start drawing a structure. P Darrow_forwardDraw the Haworth projection of α-L-mannose. You will find helpful information in the ALEKS Data resource. Click and drag to start drawing a structure. : ཊི Х Darrow_forwardDraw the structure of serine at pH 6.8. Click and drag to start drawing a structure. : d كarrow_forward
- Take a look at this molecule, and then answer the questions in the table below it. CH2OH H H H OH OH OH CH2OH H H H H OH H H OH H OH Is this a reducing sugar? yes α β ロ→ロ no ☑ yes Does this molecule contain a glycosidic bond? If you said this molecule does contain a glycosidic bond, write the symbol describing it. O no 0+0 If you said this molecule does contain a glycosidic bond, write the common names (including anomer and enantiomer labels) of the molecules that would be released if that bond were hydrolyzed. If there's more than one molecule, separate each name with a comma. ☐arrow_forwardAnswer the questions in the table below about this molecule: H₂N-CH₂ -C—NH–CH–C—NH–CH—COO- CH3 CH CH3 What kind of molecule is this? 0= CH2 C If you said the molecule is a peptide, write a description of it using 3-letter codes separated ☐ by dashes. polysaccharide peptide amino acid phospolipid none of the above Хarrow_forwardDraw a Haworth projection of a common cyclic form of this monosaccharide: CH₂OH C=O HO H H -OH H OH CH₂OH Click and drag to start drawing a structure. : ☐ Х S '☐arrow_forward
- Nucleophilic Aromatic Substitution 22.30 Predict all possible products formed from the following nucleophilic substitution reactions. (a) (b) 9 1. NaOH 2. HCI, H₂O CI NH₁(!) +NaNH, -33°C 1. NaOH 2. HCl, H₂Oarrow_forwardSyntheses 22.35 Show how to convert toluene to these compounds. (a) -CH,Br (b) Br- -CH3 22.36 Show how to prepare each compound from 1-phenyl-1-propanone. 1-Phenyl-1-propanone ہتی. Br. (b) Br (racemic) 22.37 Show how to convert ethyl benzene to (a) 2,5-dichlorobenzoic acid and (b) 2,4-dichlorobenzoic acid. 22.38 Show reagents and conditions to bring about the following conversions. (a) 9 NH2 8 CO₂H NH2 CO₂Et (d) NO2 NH2 S NH₂ NO2 CHS CHarrow_forwardive the major organic product(s) of each of the following reactions or sequences of reactions. Show all rant stereochemistry. [10 only] A. B. NaN3 1. LiAlH4, ether Br 2. H₂O CH3 HNO3 H₂/Pt H₂SO ethanol C. 0 0 CH3CC1 NaOH NHCCH AICI H₂O . NH₂ CH3CH2 N CH2CH3 + HCI CH₂CH 3 1. LIAIH, THE 2. H₂Oarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning





