MECHANICS OF MATERIALS
11th Edition
ISBN: 9780137605521
Author: HIBBELER
Publisher: RENT PEARS
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 1.5, Problem 34P
The built-up shaft consists of a pipe AB and solid rod BC. The pipe has an inner diameter of 25 mm and outer diameter of 30 mm. rod has a diameter of 15 mm. Determine the average normal stress at points D and E and represent the stress on a volume element located at each of these points
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Please do not rely too much on chatgpt, because its answer may be wrong. Please consider it carefully and give your own answer. You can borrow ideas from gpt, but please do not believe its answer.Very very grateful!
Please do not copy other's work,i will be very very grateful!!
Answer by selecting the correct options from the following multichoice selection.
ப
4m
B
A
C
D
3m
3 m
Figure Q17
FL
12 kN
E
16 KN
A. We should resolve forces in the horizontal direction to easily identify the internal force DF.
B. The solution to the problem is found to be -16 kN (C).
C. We should resolve forces in the vertical direction to first identify the internal force DF.
D. We should use Method of Joints at node F to find the internal force in member DF.
E. We should Method of Sections by cutting through members DF, DE and CE.
F. The starting point to solve this problem is to find all reactions at nodes A and B as they will be required for DF calculations.
G. The solution to the problem is found to be 16 kN (T).
H. The most appropriate method to find DF use is Method of Joints.
I. The most appropriate method to use is Method of Sections.
J. A good starting point to solve this problem is to find the horizontal reaction at node B but this is not required to the internal force
H
2 kN
K
2 kN
M
N
www
RAY
RAX
A
G
B
C
D
E
F
3 m
↑
RGY
4m
Fill in the multiple blanks.
Figure Q19
Finding the vertical reactions is the starting point which can be done by taking moments at A and G but since this is symmetrical loading case the vertical reactions can simply be calculated by halving the total loading 4 kN.
Ideally, we can solve the problem using the Method of
cutting through the members JK, DJ and
It would be sensible to select the left-hand side of the diagram as there are less full members and only one force from the reaction at node A.
This will expose the internal forces which can be labelled with the names of the members themselves.
Since we are required to find JK, examining the framework shows it is not a straight-forward matter, and we will require finding all three unknown internal forces.
The easiest internal force to find is
Next, we can take moments at node
, as we can resolve forces in the vertical direction.
in order to find the internal force JK and find…
Chapter 1 Solutions
MECHANICS OF MATERIALS
Ch. 1.2 - Determine the resultant internal normal force,...Ch. 1.2 - Determine the resultant internal normal force,...Ch. 1.2 - Determine the resultant internal normal force,...Ch. 1.2 - Determine the resultant internal normal force,...Ch. 1.2 - Determine the resultant internal normal force,...Ch. 1.2 - Determine the resultant internal normal force,...Ch. 1.2 - The shaft is supported by a smooth thrust bearing...Ch. 1.2 - Determine the resultant internal normal and shear...Ch. 1.2 - Determine the resultant internal torque acting on...Ch. 1.2 - Determine the resultant internal loadings in the...
Ch. 1.2 - The shaft is supported by a smooth thrust bearing...Ch. 1.2 - Determine the resultant internal loading on the...Ch. 1.2 - Determine the resultant internal loading on the...Ch. 1.2 - The 800-lb load is being hoisted at a constant...Ch. 1.2 - Determine resultant internal loadings acting on...Ch. 1.2 - Determine the resultant internal normal force...Ch. 1.2 - Determine the resultant internal loadings on the...Ch. 1.2 - Determine the resultant internal loadings on the...Ch. 1.2 - The blade of the hacksaw is subjected to a...Ch. 1.2 - The blade of the hacksaw is subjected to a...Ch. 1.2 - Determine the resultant internal loadings on the...Ch. 1.2 - Determine the resultant internal loadings on the...Ch. 1.2 - The sky hook is used to support the cable of a...Ch. 1.2 - Determine the resultant internal torque acting on...Ch. 1.2 - Determine the resultant internal loadings acting...Ch. 1.2 - Determine the resultant internal loadings on the...Ch. 1.2 - Determine the resultant internal loadings on the...Ch. 1.2 - The metal stud punch is subjected to a force of...Ch. 1.2 - The metal stud punch is subjected to a force of...Ch. 1.2 - Determine the resultant internal loadings acting...Ch. 1.2 - A force of 80 N is supported by the bracket....Ch. 1.2 - The curved rod has a radius r and is fixed to the...Ch. 1.2 - The pipe assembly is subjected to a force of 600 N...Ch. 1.2 - If the drill bit jams when the handle of the hand...Ch. 1.2 - The curved rod AD of radius r has a weight per...Ch. 1.2 - A differential element taken from a curved bar is...Ch. 1.5 - The uniform beam is supported by two rods AB and...Ch. 1.5 - Determine the average normal stress on the cross...Ch. 1.5 - Determine the average normal stress on the cross...Ch. 1.5 - If the 600-kN force acts through the centroid of...Ch. 1.5 - Determine the average normal stress at points A,...Ch. 1.5 - Determine the average normal stress in rod AB if...Ch. 1.5 - A 175-lb woman stands on a vinyl floor wearing...Ch. 1.5 - Determine the largest intensity w of the uniform...Ch. 1.5 - The specimen failed in a tension test at an angle...Ch. 1.5 - The built-up shaft consists of a pipe AB and solid...Ch. 1.5 - If the material fails when the average normal...Ch. 1.5 - If the block is subjected to a centrally applied...Ch. 1.5 - The plate has a width of 0.5 m. If the stress...Ch. 1.5 - The member is subjected to a tensile force of 200...Ch. 1.5 - The boom has a uniform weight of 600 lb and is...Ch. 1.5 - Determine the average normal stress in each of the...Ch. 1.5 - If the average normal stress in each of the...Ch. 1.5 - Determine the maximum average shear stress in pin...Ch. 1.5 - The 150-kg bucket is suspended from end E of the...Ch. 1.5 - The 150-kg bucket is suspended from end E of the...Ch. 1.5 - If the pedestal is subjected to a compressive...Ch. 1.5 - The beam is supported by two rods AB and CD that...Ch. 1.5 - The beam is supported by two rods AB and CD that...Ch. 1.5 - The beam is supported by a pin at B and a short...Ch. 1.5 - The railcar docklight is supported by the...Ch. 1.5 - The plastic block is subjected to an axial...Ch. 1.5 - During a tension test, the wooden specimen is...Ch. 1.5 - The bar has a cross-sectional area of 400(106) m2....Ch. 1.5 - The bar has a cross-sectional area of 400(106) m2....Ch. 1.5 - Prob. 54PCh. 1.5 - The 2-Mg concrete pipe has a center of mass at...Ch. 1.5 - The 2-Mg concrete pipe has a center of mass at...Ch. 1.5 - The pier is made of material having a specific...Ch. 1.5 - Prob. 58PCh. 1.5 - The uniform bar, having a cross-sectional area of...Ch. 1.5 - Prob. 60PCh. 1.5 - Prob. 61PCh. 1.5 - The triangular blocks are glued along each side of...Ch. 1.5 - The triangular blocks are glued along each side of...Ch. 1.5 - Prob. 64PCh. 1.5 - Determine the maximum magnitude P of the load the...Ch. 1.5 - Prob. 66PCh. 1.5 - Prob. 67PCh. 1.7 - Rods AC and BC are used to suspend the 200-kg...Ch. 1.7 - If it is subjected to double shear, determine the...Ch. 1.7 - Determine the maximum average shear stress...Ch. 1.7 - If each of the three nails has a diameter of 4 mm...Ch. 1.7 - The strut is glued to the horizontal member at...Ch. 1.7 - Determine the maximum average shear stress...Ch. 1.7 - If the eyebolt is made of a material having a...Ch. 1.7 - If the bar assembly is made of a material having a...Ch. 1.7 - Determine the maximum force P that can be applied...Ch. 1.7 - The pin is made of a material having a failure...Ch. 1.7 - If the bolt head and the supporting bracket are...Ch. 1.7 - Six nails are used to hold the hanger at A against...Ch. 1.7 - If A and B are both made of wood and are 38 in....Ch. 1.7 - Prob. 70PCh. 1.7 - The connection is made using a bolt and nut and...Ch. 1.7 - Determine the required cross-sectional area of...Ch. 1.7 - Prob. 73PCh. 1.7 - The spring mechanism is used as a shock absorber...Ch. 1.7 - Prob. 75PCh. 1.7 - The hangers support the joist in such a way that...Ch. 1.7 - Prob. 77PCh. 1.7 - Prob. 78PCh. 1.7 - The two aluminum rods AB and BC have diameters of...Ch. 1.7 - The cotter is used to hold the two rods together....Ch. 1.7 - Prob. 81PCh. 1.7 - The 60mm60mm oak post is supported on the pine...Ch. 1.7 - Prob. 83PCh. 1.7 - Prob. 84PCh. 1.7 - The assembly consists of three disks A, B, and C...Ch. 1.7 - Prob. 86PCh. 1.7 - Prob. 87PCh. 1.7 - Prob. 88PCh. 1.7 - Prob. 89PCh. 1.7 - Prob. 90PCh. 1.7 - Prob. 91PCh. 1.7 - Prob. 92PCh. 1.7 - Prob. 93PCh. 1.7 - The aluminum bracket A is used to support the...Ch. 1.7 - If the allowable tensile stress for the bar is...Ch. 1.7 - The bar is connected to the support using a pin...Ch. 1 - The beam AB is pin supported at A and supported by...Ch. 1 - The long bolt passes through the 30-mm-thick...Ch. 1 - Determine the required thickness of member BC to...Ch. 1 - The circular punch B exerts a force of 2 kN on the...Ch. 1 - Determine the average punching shear stress the...Ch. 1 - The 150 mm by 150 mm block of aluminum supports a...Ch. 1 - The yoke-and-rod connection is subjected to a...Ch. 1 - The cable has a specific weight (weight/volume)...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Please do not rely too much on chatgpt, because its answer may be wrong. Please consider it carefully and give your own answer. You can borrow ideas from gpt, but please do not believe its answer.Very very grateful! Please do not copy other's work,i will be very very grateful!!arrow_forwardPlease do not rely too much on chatgpt, because its answer may be wrong. Please consider it carefully and give your own answer. You can borrow ideas from gpt, but please do not believe its answer.Very very grateful! Please do not copy other's work,i will be very very grateful!!arrow_forwardPlease do not rely too much on chatgpt, because its answer may be wrong. Please consider it carefully and give your own answer. You can borrow ideas from gpt, but please do not believe its answer.Very very grateful! Please do not copy other's work,i will be very very grateful!!arrow_forward
- (19) Figure Q19 shows a framework consisting of horizontal members 3 m long and vertical members 4 m long. The framework is loaded at joints J and L with downward load forces of 2 kN. The applied forces cause a vertical reaction forces at A and G and no horizontal reaction force. You are asked to find the internal force in member JK - what would be your approach to solve this problem? Explain your solution process and some of your results by filling in the blanks below. 2 kN 2 kN H RAY RAX A K M N B C D E F 3 m 1 RGY 4m Fill in the multiple blanks. Figure Q19 Finding the vertical reactions is the starting point which can be done by taking moments at A and G but since this is symmetrical loading case the vertical reactions can simply be calculated by halving the total loading 4 kN. Ideally, we can solve the problem using the Method of cutting through the members JK, DJ and It would be sensible to select the left-hand side of the diagram as there are less full members and only one force…arrow_forward4m A 72 kN C E B D F 144 kN 3 m 3 m 3 m Figure Q16 Fill in the multiple blanks below. To find the reactions the starting point is to take moments at a suitable node location. Since node unknowns it is the ideal location to first take moments. By taking moments in a clockwise orientation we find a moment of there is an additional moment of 288 kNm from the load at C. From combining all moments together, we can then find the vertical reaction at F which is RFy= place. For best practice, it is a good approach to take moments at has two kNm due to the force load at node B and KN to 1 decimal in order to the find the vertical reaction RAY- Finally, we can sum forces in the horizontal direction to find the reaction RAX = -72 kN, assuming the reaction at A acts left-to-right. After which we can then sum forces in the vertical direction to verify the sum of RAY plus Rgy is the same as the total downwards force which should be KN.arrow_forwardPlease do not rely too much on chatgpt, because its answer may be wrong. Please consider it carefully and give your own answer. You can borrow ideas from gpt, but please do not believe its answer.Very very grateful! Please do not copy other's work,i will be very very grateful!!arrow_forward
- 10 kN A B 1m RBY 20 kN/m 30 kN с D E 1m 1m 1m Find the vertical reaction Rgy at B Figure Q18 Find the vertical reaction REY at E Verify the reactions Rgy and REY are valid ✓ Find the Bending Moment value at C You could find the Bending Moment value at B شه A. by finding the area on the Shear Force graph left of B (treating areas underneath the x-axis as negative). B. by taking moments at B. C. by taking moments of all forces left of C. D. by taking moments at E. E. by summing all forces in a vertical direction.arrow_forwardPlease do not rely too much on chatgpt, because its answer may be wrong. Please consider it carefully and give your own answer. You can borrow ideas from gpt, but please do not believe its answer.Very very grateful! Please do not copy other's work,i will be very very grateful!!arrow_forward(10) A regular cross-section XXY mm beam, where X=84 m and Y=77 m and 1800 mm long, is loaded from above in the middle with a load of Z=2 kN causing a compressive Bending Stress at the top of the beam and tensile Bending Stress at the bottom of the beam. The beam in addition experiences a tensile end loading in order to reduce the compressive stress in the beam to a near zero value. The configuration of the beam is illustrated in Figure Q10. Calculate the end loading force required in order to reduce total compressive stress experienced in the beam to be near zero? State your answer to the nearest 1 decimal place in terms of kilo-Newtons. X mm Y mm ? KN Z KN Figure Q10 1800 mm ? KNarrow_forward
- (13) A cylindrical beam of length 2 m and diameter of 120 mm, is arranged with a loading in the middle and two supports either end, as shown in Figure Q13. Given the shaft is made of metal which has a tensile strength of 350 MPa. Select the safest Factor of Safety (FOS) to 1 decimal place that the design engineer should work to. 100 kN ○ A. 1.2 ○ B. No Valid Answer ○ c. 1.1 O D.3.7 E. 0.8 2 m Figure Q13 120 mmarrow_forwardThe pin-connected assembly consists of bronze rods (1) and (2) and steel rod (3). The bronze rods each have a diameter of 12mm and an elastic modulus of E=120GPa. The steel rod has a diameter of 18mm and an elastic modulus of E 210 GPa. Assume a= 2.0 m, b=1.5 m, and c = 2.0 m. What is the magnitude of load P that is necessary to displace point A 5mm to the left? a 5.52kN 17.05kN 5.05kN d 6.75kN Right answer need, no chatgpt,only handwrittenarrow_forwardThe pin-connected assembly consists of bronze rods (1) and (2) and steel rod (3). The bronze rods each have a diameter of 12mm and an elastic modulus of E=120GPa. The steel rod has a diameter of 18mm and an elastic modulus of E 210 GPa. Assume a= 2.0 m. b = 1.5 m, and c = 2.0 m. What is the magnitude of load P that is necessary to displace point A 5 mm to the left? Solution must be in handwritten format,No Chatgpt 10 5.52kN b 17.05kN 5.05kN 6.75kN (3)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
EVERYTHING on Axial Loading Normal Stress in 10 MINUTES - Mechanics of Materials; Author: Less Boring Lectures;https://www.youtube.com/watch?v=jQ-fNqZWrNg;License: Standard YouTube License, CC-BY