(19) Figure Q19 shows a framework consisting of horizontal members 3 m long and vertical members 4 m long. The framework is loaded at joints J and L with downward load forces of 2 kN. The applied forces cause a vertical reaction forces at A and G and no horizontal reaction force. You are asked to find the internal force in member JK - what would be your approach to solve this problem? Explain your solution process and some of your results by filling in the blanks below. 2 kN 2 kN H RAY RAX A K M N B C D E F 3 m 1 RGY 4m Fill in the multiple blanks. Figure Q19 Finding the vertical reactions is the starting point which can be done by taking moments at A and G but since this is symmetrical loading case the vertical reactions can simply be calculated by halving the total loading 4 kN. Ideally, we can solve the problem using the Method of cutting through the members JK, DJ and It would be sensible to select the left-hand side of the diagram as there are less full members and only one force from the reaction at node A. . This will expose the internal forces which can be labelled with the names of the members themselves. Since we are required to find JK, examining the framework shows it is not a straight-forward matter, and we will require finding all three unknown internal forces. The easiest internal force to find is Next, we can take moments at node as we can resolve forces in the vertical direction. in order to find the internal force JK and find that it has value of kN (use the convention that compressive internal forces are negative values).
(19) Figure Q19 shows a framework consisting of horizontal members 3 m long and vertical members 4 m long. The framework is loaded at joints J and L with downward load forces of 2 kN. The applied forces cause a vertical reaction forces at A and G and no horizontal reaction force. You are asked to find the internal force in member JK - what would be your approach to solve this problem? Explain your solution process and some of your results by filling in the blanks below. 2 kN 2 kN H RAY RAX A K M N B C D E F 3 m 1 RGY 4m Fill in the multiple blanks. Figure Q19 Finding the vertical reactions is the starting point which can be done by taking moments at A and G but since this is symmetrical loading case the vertical reactions can simply be calculated by halving the total loading 4 kN. Ideally, we can solve the problem using the Method of cutting through the members JK, DJ and It would be sensible to select the left-hand side of the diagram as there are less full members and only one force from the reaction at node A. . This will expose the internal forces which can be labelled with the names of the members themselves. Since we are required to find JK, examining the framework shows it is not a straight-forward matter, and we will require finding all three unknown internal forces. The easiest internal force to find is Next, we can take moments at node as we can resolve forces in the vertical direction. in order to find the internal force JK and find that it has value of kN (use the convention that compressive internal forces are negative values).
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 1 images
Recommended textbooks for you
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY